

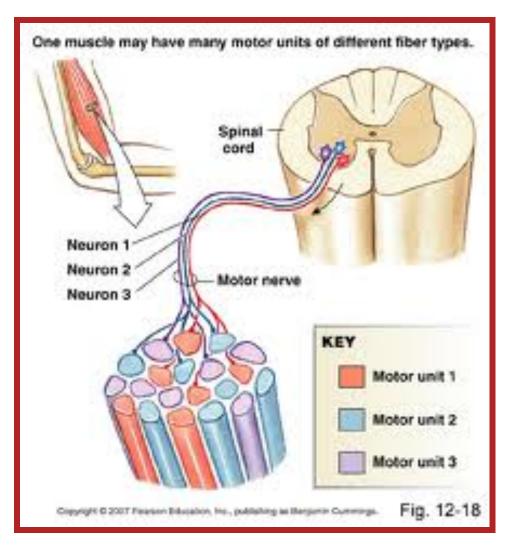
Introduction to Neuromuscular Disorders: From ALS to ZasP

John T. Kissel, M.D. Professor of Neurology & Pediatrics

March 29, 2012

Wexner Medical Center

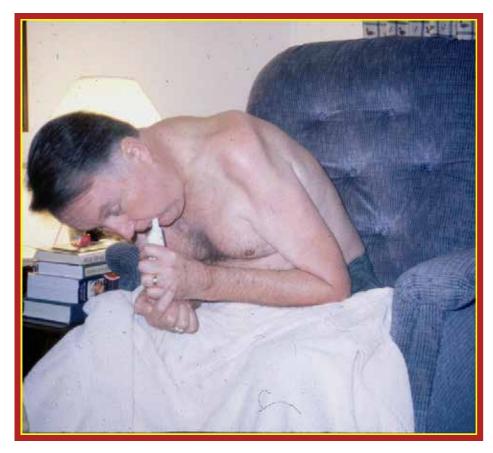
Disclosures


- Receive medication from Abbott Labs for clinical trial of VPA in SMA
- Received support from Alexion for a clinical trial of eculizumab in MG
- Will be discussing some off label uses of drugs and agents
- This is an impossible talk to give!!!
 - Will *not* be a comprehensive overview of all neuromuscular diseases

Objectives

- Definition and clinical limits of term "neuromuscular disease" (NMDs)
- Classification and list of most important NMDs
- How does a clinician diagnose these patients?
 Show and tell with pictures and videos
- BRIEF overview of several *relatively* common NMDs (all are "rare"; < 200,000 in U.S.)
 - Won't discuss pathogenesis, treatment
 - Other lectures later in course

NM Disease Definition


- Dx. of "motor unit"
- 4 main components
 - Anterior horn cell
 - Peripheral nerve
 - -NMJ --Muscle
- Seen by neurologists, some PMR, rheum
- Not brain, spinal cord
 "Rectum of neurology"

Motor Unit Inspirational Aside

". to move things is all that mankind can do, for such the sole executant is muscle, whether in whispering a syllable or in felling a forest."

Charles Sherrington, 1924

Courtesy Joanne Lynn, Wendy King

Neuromuscular Diseases Classification

Anterior horn cell disease

- Genetic: spinal muscular atrophy (SMA)
- Acquired: amyotrophic lateral sclerosis (ALS)

Peripheral nerve

- Genetic: Charcot-Marie-Tooth dx. (CMT)
- Acquired: Diabetic neuropathy (axonal)
 - Demyelinating Guillain-Barre syndrome (GBS); Chronic acquired demyelinating polyneuropathy (CIDP)

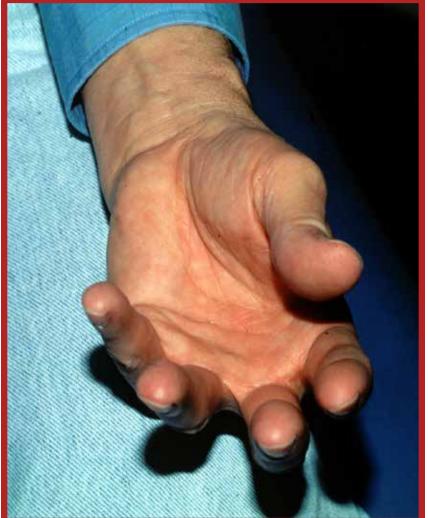
Neuromuscular Diseases Classification/Approach

Neuromuscular junction

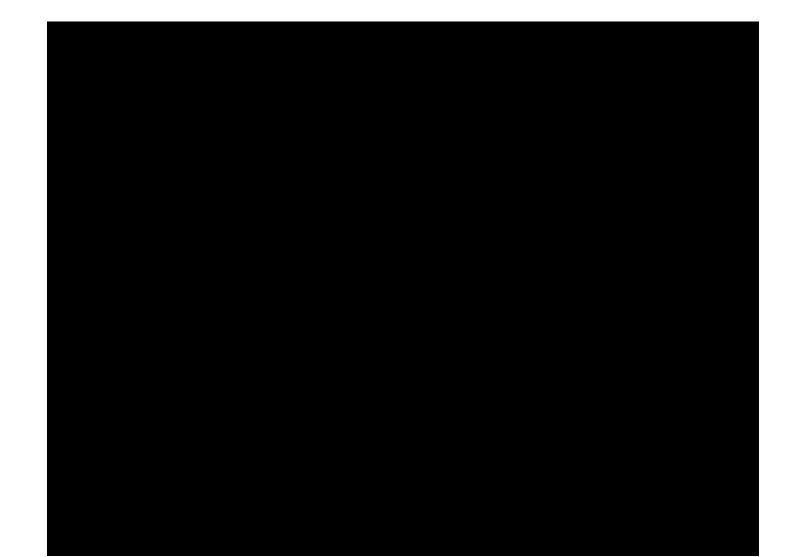
- Genetic: Cong. myasthenic syndromes (CMS)
- Acquired: myasthenia gravis (MG) & Lambert-Eaton myasthenic syndrome (LEMS)

Muscle

- Genetic: Muscular dystrophies (e.g. DMD)
- Acquired: idiopathic inflammatory myopathies
 - Polymyositis (PM); dermatomyositis (DM); inclusion body myositis (IBM)


Diseases of Motor Unit Symptoms/Complaints

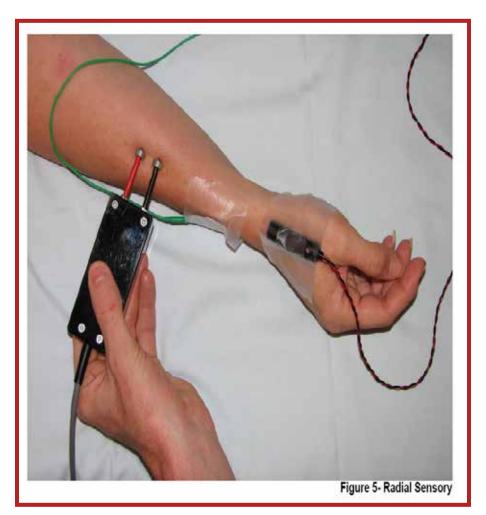
- WEAKNESS!!
- Functional difficulties
- Late milestones in kids
- Fatigue; dec. endurance
- Cramps/stiffness
- Muscle pain
- Hypertrophy/atrophy
- "Other" (heart, GI, resp.)



Neuromuscular Disease Case Presentation

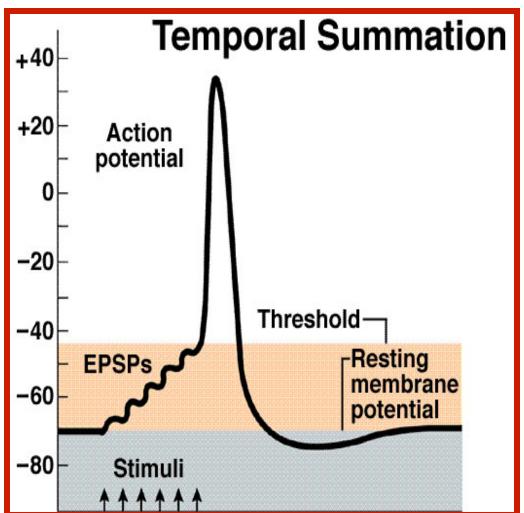
- 48 yo OSU prof slow healing after ankle fx.
- ? distal weakness and stiffness
- Foot drop, clumsy in high school; trouble getting around
- Referred by orthopedic surgeon; why won't he heal?

Case Presentation



Neuromuscular Disease Diagnostic Approach

- History & physical examination PRIMO!
 Duration, type, distribution of weakness
- Electrophysiologic studies (NCV, EMG)
- Laboratory (i.e. blood tests)
 - Serum tests (esp creatine kinase or CK)
 - Genetic testing (IF appropriate & available)
- Muscle/nerve biopsy
- Specialty tests (eg. forearm exercise test)


Electrodiagnostic Studies

- Answers specific ? raised by history & examination
- Localizes problem in the motor unit!
- Three components
 - NCV (shocks!)
 - Needle EMG
 - Repetitive stimulation for NMJ problem
- Special studies

Neurodiagnostic studies

- NCVs measure summation of APs
 - generated by axons in the nerve (sensory nerve amplitude)
 - generated by axons and muscle fibers (motor nerves)
- Axonal disease will decrease amplitude of response

Nerve Conduction Studies

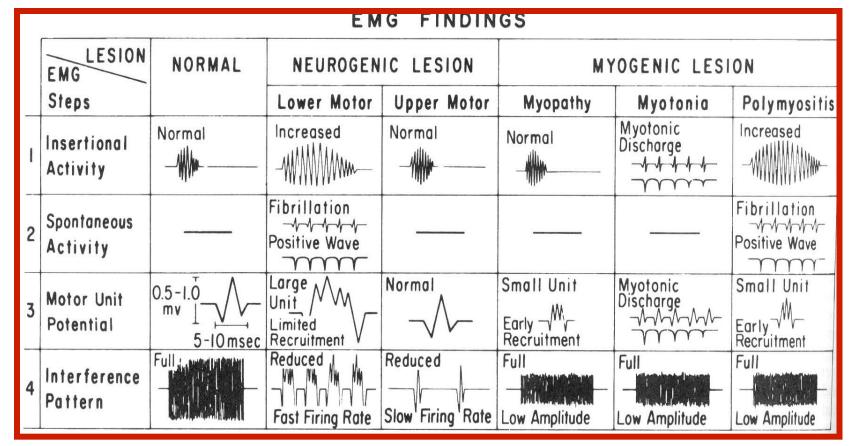

Figure 12- Median Motor, Wrist

Figure 12- Median Motor, Elbow

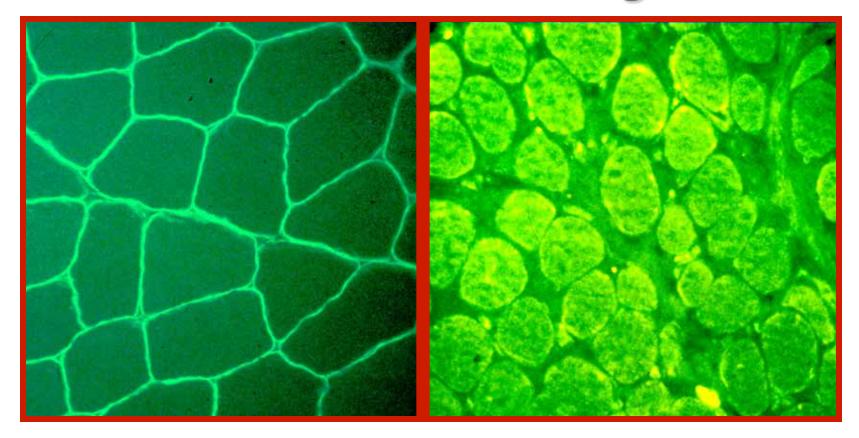

- Velocity depends upon intact myelin
- Dx. affecting myelin will change latencies, velocities

Electromyography

- Activated muscle generates motor unit potentials (MUPs)
 - Neurogenic or myopathic dx. cause changes in MUP amplitude, duration, firing rate, and recruitment that allows classification



EMG of Case


 Genetic testing positive for repeat of myotonic dystrophy type 1 (DM1)

Muscle & Nerve Biopsy

- Indications reduced ~50% with genetic testing
 - Still indispensable in many patients (IBM)
- Often does not give SPECIFIC diagnosis
- No benefit in patients with isolated myalgia!

Muscle Biopsy Immunostaining

Normal Patient Genetic testing confirmed Duchenne dystrophy

Neuromuscular Diseases Classification/Approach

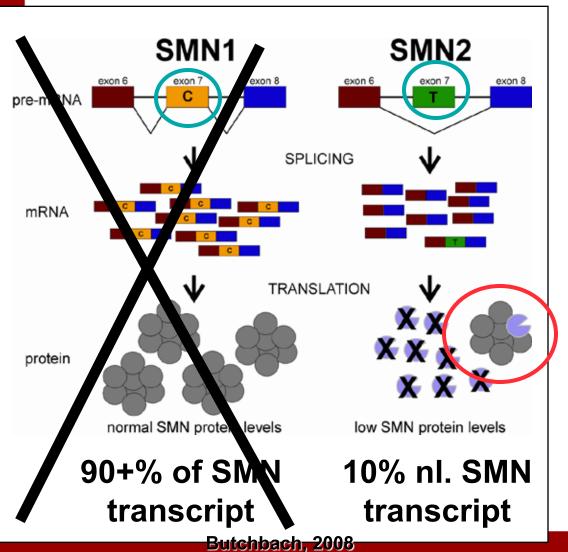
- Anterior horn cell disease
 - Genetic: spinal muscular atrophy (SMA)
 - Acquired: amyotrophic lateral sclerosis (ALS)
- Peripheral nerve
 - Genetic: Charcot-Marie-Tooth dx. (CMT)
 - Acquired: diabetic polyneuropathy (axonal)
 - Demyelinating Guillain-Barre syndrome (GBS); Chronic acquired demyelinating polyneuropathy (CIDP)

Spinal Muscular Atrophy Background

- Many types; 5q SMN related most common —Autosomal recessive proximal MND
- Affects 1 in 6-8,000 live births
 - -Most common fatal genetic disease of infants
 - Carrier frequency ~1:40; 7 million US carriers
- Affects all ages; leading cause of morbidity and mortality (adults)
- Major focus of clinical and basic research at OSU (Burghes, Kaspar, Kolb, Beattie labs)

SMA Type 1 Acute Werdnig-Hoffman

- Dec. fetal movement
- Onset < 6 mos.
- Hypotonia, weakness; legs > arms; never sit!
 - Poor head control
- Bulbar muscle weakness
 - Weak suck, swallow
- Tongue fascics in 50%
- Bell-shaped chest Respiratory distress
 - Death < 2 years</p>


SMA Classification Updated 1991 Classification

Туре	<u>Onset</u>	Function	<u>Death</u>	<u>%</u>
0	Prenatal	Resp support	<1 mo.	<1%
1	0 - 6 mos.	Never sit	<2 yrs.	60
2	< 18 mos.	Never stand	>2 yrs.	20
3	> 18 mos.	Stand alone	Adult	25
3a	< 3 years	Stand alone	Adult	
3b	> 3 years	Stand alone	Adult	
4	>21 years	Stand alone	Adult	5

SMN Gene Region Results

- No SMN1 in SMA pts.
- 1 or more copies SMN2
- 90% SMN2 lacks exon 7
- Truncated, unstable, rapidly degraded, low level protein

BUT

- 10% is full length SMN
- Partially compensates
- Phenotype variability relates to SMN2 copy #

SMA Updated Classification

<u>Type</u>	<u>Onset</u>	Function	<u>Death</u>	<u>SMN2 #</u>
0	Prenatal	Resp support	<1 mo.	1
1	0 - 6 mos.	Never sit	<2 yrs.	2
2	< 18 mos.	Never stand	>2 yrs.	3,4
3	> 18 mos.	Stand alone	Adult	
3a	< 3 years	Stand alone	Adult	3,4
3b	> 3 years	Stand alone	Adult	4
4	>21 years	Stand alone	Adult	4-8

Molecular genetics validated the clinical classification!!

Hypothesis: If low SMN causes MN loss & inc. SMN2 is protective

Inc. SMN2 expression

OR

Converting SMN2 to SMN1 --Promote exon 7 inclusion Drugs to promote exon 7 inclusion, stabilize SMN2 inc. SMN2 product

Antisense oligonucleotides

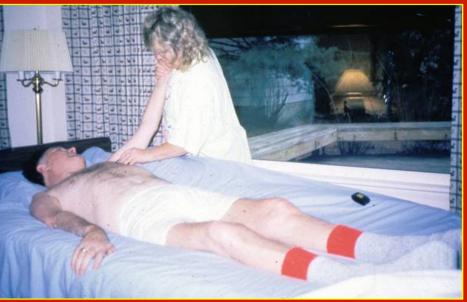
Replacing SMN1 gene

OR

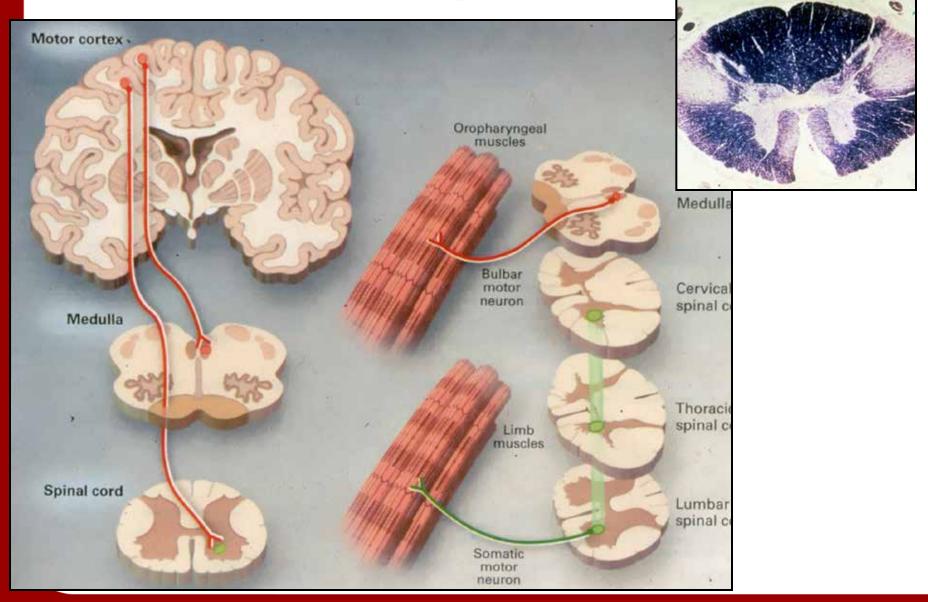
Viral mediated gene Transfer (Kaspar et al, 2010)

may "rescue" MNs, prevent MN loss, allow reinnervation

Proximal SMA Genetic Classification


<u>Autosomal dominant</u> Chronic proximal SMA (child)	<u>Locus</u>	<u>Gene</u> 2	
Chronic proximal SMA (enild) Chronic proximal SMA (adult) Benign cong. with contractures	20q13.3 ?	VAPB	
Congenital with leg weakness*	12q23 +	?	
Scapuloperoneal syndromes	12q24 +	?	
Bulbo-SMA with gynecomastia	?	?	
SMALD (lower ext. predom.)	14q32	?	
X-linked			
Bulbo-SMA (Kennedy's dx.)	Xq12	Androgen Rec.	
Infantile SMA with arthrogryposis	Xp11	UBE1	

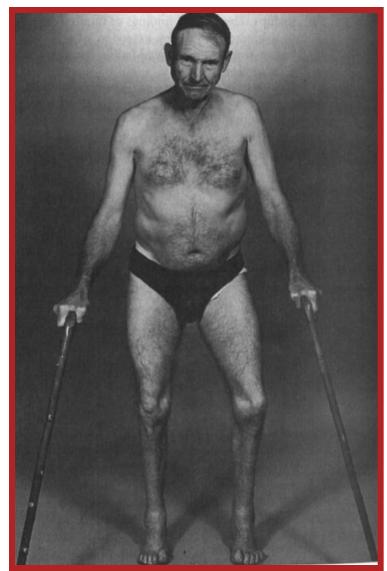
- * same locus as distal HMN2
- + other loci identified


Amyotrophic Lateral Sclerosis Lou Gehrig's Disease

- Affects ~2/100,000/yr
- Peaks > age 50 group
- Weakness progresses to complete paralysis
- Sensation, autonomics spared
- 50-60% die in 3-4 yrs.
 90+% in 5 yrs.
- ? pathogenesis
- Untreatable (riluzole?)

Anatomy of ALS

ALS Symptoms


- Lower motor nerves
 - Segmental weakness
 - Atrophy
 - Fasciculations
 - Muscle cramping
- Upper motor nerves
 - Stiffness
 - Spasticity
 - Hyperreflexia

Neuromuscular Diseases Classification/Approach

- Anterior horn cell disease
 - Genetic: spinal muscular atrophy (SMA)
 - Acquired: amyotrophic lateral sclerosis (ALS)
- Peripheral nerve
 - Genetic: Charcot-Marie-Tooth dx. (CMT)
 - Acquired: diabetic polyneuropathy (axonal)
 - Demyelinating Guillain-Barre syndrome (GBS); Chronic acquired demyelinating polyneuropathy (CIDP)

Charcot-Marie-Tooth Neuropathy

- GROUP of disorders
- Onset age variable even within families
 - Infancy to 70 years
 - Typically: 1st-3rd decade
- Length-dependent loss of sensation
- Distal weakness and atrophy, absent reflexes
- Foot deformities
 - Pes cavus, "champaigne bottle"

Charcot Marie Tooth Symptoms

- Frequent tripping, falling
- Recurrent ankle injuries
- Slow running; difficulty with jumping
- Difficulty fitting shoes
- Gait disturbance ("walk like a duck")
- "FLF":funny-looking feet
- Leg cramps & pain
- Fatigue walking even short distances

CMT Genetics

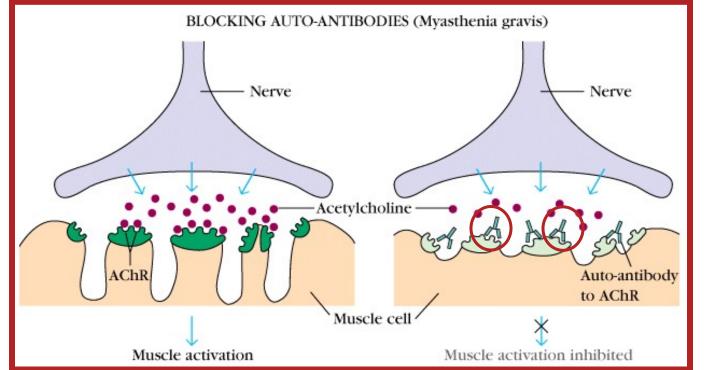
- CMT1 demyelinating
 NCV <30 m/sec
- CMT2 axonal
 NCV > 30 m/sec

CMT & HMS	CMT Syndrome	Gene	Locus	OMIM	
Dominant <u>CMT 1A</u> : Pl <u>CMT 1B</u> : P ₀	AD Demyelinating				
<u>CMT 1</u> : L1 <u>CMT 1</u> : E(CMT1A	PMP22	17p11	118220	
<u>CMT 1</u> 2: P ₀ <u>CMT 1</u> 2: NF	CMT1B	MPZ	1q22	118200	
HNPP: D. C. HMSN 3 (D	CMT1C	LITAF	16p13	601098	22
PMP-22; Thermosens PNS & CNS	CMT1D	EGR2	10q21	607678	
Sensory PN Hypomyelir	CMT1E	PMP22	17p11	118300	—
Recessive	CMT1F	NEFL	8p21	607734	
<u>CMT 4A</u> : G <u>CMT 4B</u> : M <u>CMT 4P2: S</u>	AD Axonal				
<u>CMT 4</u> <u>CMT 4</u> 2: SF <u>CMT 4</u> <u>D (Le</u>	CMT2A1	KIF1B	1p36	118210	
<u>CMT 45</u> : EC <u>CMT 45</u> : Pe	CMT2A2	MFN2	1p36	609260	
HMSN-Rus CMT 4H: F(CMT 4J: FI(CMT2B	RAB7	3q13	600882	ACR)
<u>HMSN 3</u> (D <u>P₀; PMP-1</u>	CMT2C		12q23	606071	
<u>HMSN + Ju</u> Cataracts (C	CMT2D	GARS	7p15	601472	
<u>Cockayne's</u> Congenital I	CMT2E	NEFL	8p21	607684	
P ₀ , PMP-1 Farber lipog	CMT2F	HSP27	7q11	606595	
<u>CDG1a</u> : PM <u>Krabbe</u> : GA MLD: ARS <i>e</i>	CMT2G		12q12	608591	
<u>PMP-22 poi</u> Refsum's di	CMT2I	MPZ	1q22	607677	
<u>Childhoo</u> <u>Adolesce</u>	0.170.1	MPZ	4 99	~~~~~~	
Infant: PE <u>PHARC</u> : 2	CMT2J	(T124M)	1q22	607736	
<u>HMSN + CN</u> <u>X-linked</u>	CMT2L		12q24	608673	
<u>1</u> (Males): C Pyramidal si	AD Intermediate				
	CMTDI A		10q24	606483	sis
	CMTDI B	DNM2	19p13	606482	
	CMTDI C		1p35	608323	ninant
	CMTDI D	MPZ (D6Y)	1q22	607791	

Neuromuscular Diseases Classification/Approach

Neuromuscular junction

- Genetic: Cong. myasthenic syndromes (CMS)
- Acquired: myasthenia gravis (MG) & Lambert-Eaton myasthenic syndrome (LEMS)
- Muscle
 - Genetic: Muscular dystrophies (e.g. DMD)
 - Acquired: idiopathic inflammatory myopathies
 - Polymyositis (PM); dermatomyositis (DM); inclusion body myositis (IBM)


Myasthenia Gravis Overview

- Autoimmune disease affects ~ 1:100,000
- Causes variable & fatigable weakness
 - Worsens with use
 - Eyes, bulbar muscles, face affected
- Proximal and symmetric limb weakness
- Can affect respiratory muscles & cause death

MG Therapy Pathogenesis

Caused by antibody to Ach receptor at endplate

- Blocks receptor or accelerates degradation
- Get less acetylcholine "bang for the buck" (fatigue)
- Suggests treatment approach

MG Therapy Time to Initial Response

• <u>THERAPY</u>

- Pyridostigmine
- Plasmapheresis
- IVIG
- Prednisone
- Mycophenolate
- Cyclosporine
- Azathioprine
- Thymectomy
- Rituximab

• TIME TO EFFECT

- 10-15 minutes
- 1-14 days
- 1-4 weeks
- 2-8 weeks
- 2-6 months
- 2-6 months
- 3-18 months
- Several mos to yrs ?
- 1-6 months

Neuromuscular Diseases Classification/Approach

- Neuromuscular junction
 - Genetic: Cong. myasthenic syndromes (CMS)
 - Acquired: myasthenia gravis (MG) & Lambert-Eaton myasthenic syndrome (LEMS)
- Muscle
 - Genetic: Muscular dystrophies (e.g. DMD)
 - Refers to genetic disorder associated with necrosis/degeneration/fibrosis on muscle biopsy

Classification of MD

Non-LGMD Autosomal Dominant Dystrophies							
<u>Dx.</u>	<u>Chrom.</u>	Protein	Testing				
DM-1	19q13.3	DMPK	Genetic				
DM-2	3q21	ZNF9	Genetic				
FSHD	4q35	?	Genetic				
OPD	14q11.2	-14 PABP2	Genetic				
X-linked Recessive							
Dx.	<u>Chrom.</u>	<u>Protein</u>	Testing				
DMD/BMD	Xp21	Dystrophin	Genetic/IH				
Emery-D	Xq28	Emerin	Genetic/IH				

Classification of MD LGMD

Autosomal Dominant LGMDs (LGMD1)						
Dx.	<u>Chrom</u>	<u>. Protei</u>	<u>n Testing</u>			
1A	5q22.3-31.3	Myotilin	NA			
1B@	1q11-21	Lamin A/C	Genetic			
1C	3p25	Caveolin-3	IH			
1D	6q23	?	NA			
1E	7q	?	NA			
1F	7q32.1	?	NA			

Classification of LGMD

Autosomal Recessive LGMDs (LGMD2)

Dx. Chrom.	Protein	Testing	
2A 15q15.1-21.1	calpain 3	WB, genetic	
2B@ 2p13	dysferlin	IH, WB, gen	
2C 13q12	γ-sarcoglycan	IH, genetic	
2D 17q12-21.3	lpha-sarcoglycan	IH, genetic	
2E 4q12	β-sarcoglycan	IH, genetic	
2F 5q33-34	δ -sarcoglycan	IH, genetic	
2G 17q11-12	telethonin	NA	
2H 9q31-33	E3 ubiquitin ligase NA		
2l 19q13	FKRP protein	IH, genetic	
2J 2q31	titin		

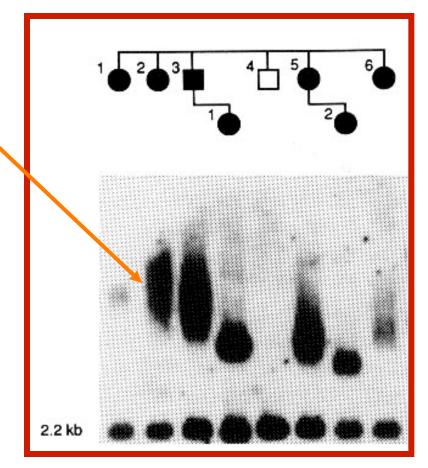
50% of LGMD cases still undiagnosable!

FSH Dystrophy Overview

- Prevalence 1:20,000
- Autosomal dominant
 25% sporadic
- Sx. begin < age 20
 20% asymptomatic
- Severity variable
 20% need wchair
- Does not shorten life

FSH Dystrophy Genetics

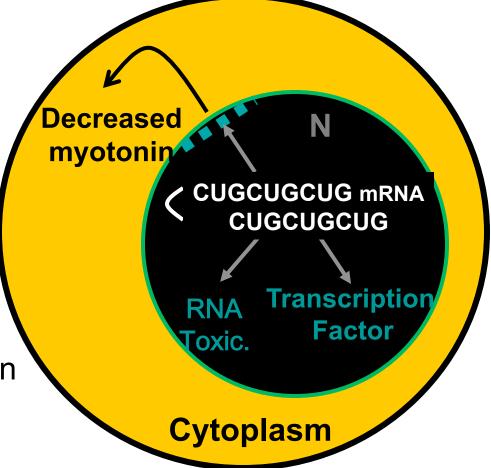
- Variable deletion in 3.3 kb repeat sequence D4Z4 at 4q35; "A" allele only
 - 95% -short fragment (normal is 38-300 kb
 - FSH < 35 kb; inverse correlation with severity
- Toxic gain of function of DUX4 transcript (Harper lab)


Myotonic Dystrophy Overview

- Most common adult MD – 15 cases/100,000
- A.D. high penetrance
- Presents < age 50</p>
- Variable severity & systemic involvement
- Myotonia by EMG!
- Multisystem disease
 - Heart, yes (cataracts), diabetes, TMJ, impotence

Myotonic Dystrophy Genetics

- 19q13.3 expanded CTG repeat (nl < 35) in non-coding region of DMPK gene
 – Myotonin protein
- 98% of DM cases
- Repeat size correlates with severity
- Congenital form inherited from mother
 - Onset in infancy
 - Death in 25%


Prior et al, 1995

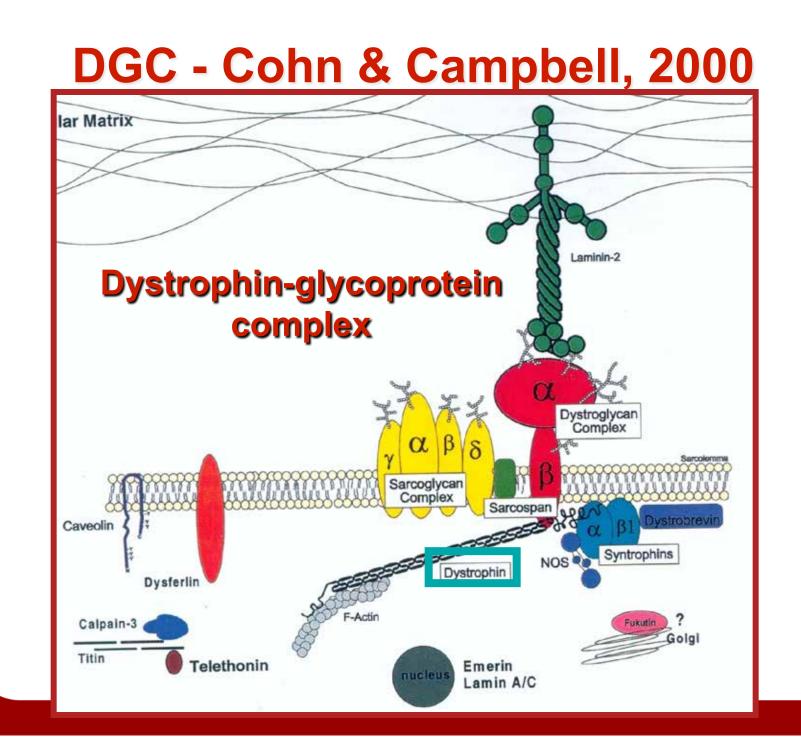
Myotonic Dystrophy Genetics

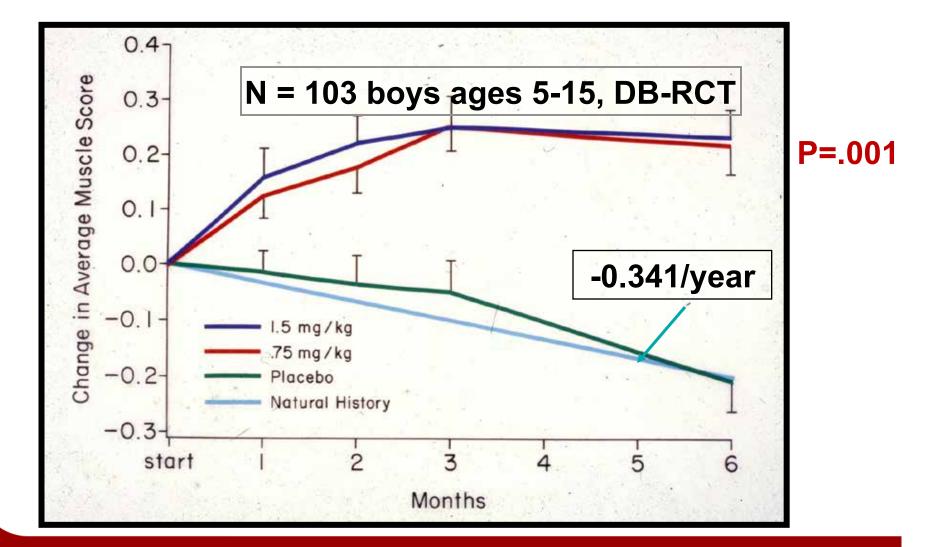
- Repeat size correlates with disease severity
 - Classical disease 100 1000 repeats
 - Congenital often > 750
 - Minimal 50-150; "pre-symptomatic" 35-50
- Repeat unstable; true genetic anticipation
- DM2 locus at 3q21 in 2% (90% of PROMM)
 - CCTG repeat in ZNF9 gene (Liquori, 2001)
 - Both DM tests available commercially
- Other PROMM, DM3 not linked to either locus

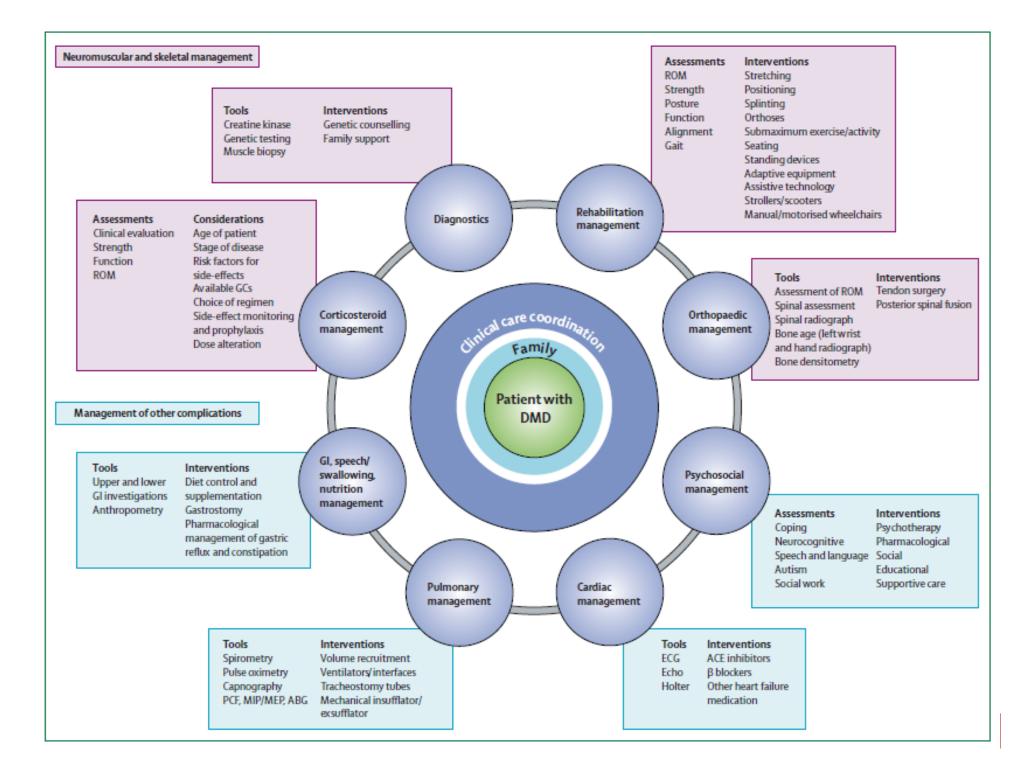
Myotonic Dystrophy Molecular Pathogenesis

- 1. Decreased myotonin-(cardiac problems)
- RNA toxicity– Myopathy, myotonia (dec. Cl⁻¹ channels)
- Binds to transcription factors muscleblind proteins Dec. protein expression (eg. SIX 5 – cataracts)

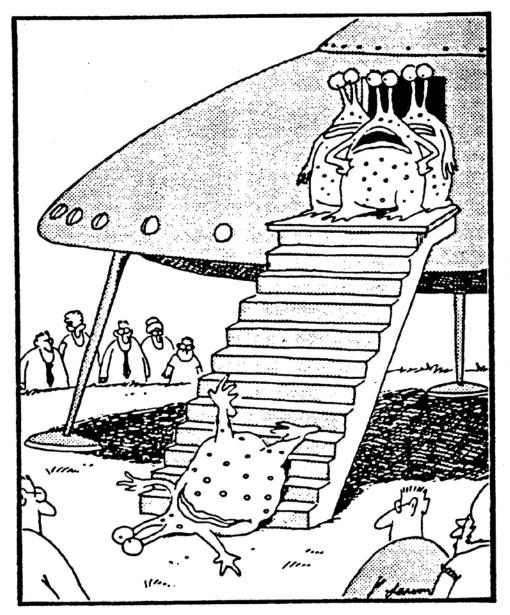
Duchenne Dystrophy Overview


- Most common lethal XLR (1:3500 male births)
- Xp21 dystrophin gene mutation
 - New mut. in 1/3rd
- Usual onset 3-5 years
- Non-ambulatory ~age 12
- No rx: death ~age 20
 Resp. compromise
 - Cardiomyopathy


Duchenne Dystrophy Genetics


- Involves mutations in Xp21 dystrophin gene
- 70% mutations identified with traditional tests
 - 65% deletions; 5% duplications
- 20-25% point mutations detected
- Tests available commercially

Prednisone Therapy in DMD *Mendell et al (CIDD), NEJM, 1989*



Final Word

- All are welcome to come to clinic
 - john.kissel@osumc.edu
- Pertinent references
 - <u>Neuromuscular Disorders</u> Amato & Russell
 - Neuromuscular Home Page at Wash U.
 - <u>http://neuromuscular.wustl.edu/</u>
- Thanks to Wendy King, David Arnold, Victoria Lawson, Miriam Freimer, Joanne Lynn for slides!

Clinical NM Group Including Barnacle Kolb

Thank you for your attention!

"Wonderful! Just wonderful!...So much for instilling them with a sense of awe"