Mouse models of muscular dystrophies

- <u>mdx</u>: spontaneously occurring mutation of dystrophin-deficiency.
 - muscle pathology: degeneration and regeneration of muscle fibers
 - absence of DAPC from the muscle membrane
 - deficits in muscle force generation and elevated CK
- Expression of truncated dystrophin transgenes in skeletal muscle of *mdx* mice have lead to the understanding of dystrophin protein domains and their functions, including the interaction of dystrophin with the DAPC.

Localization of dystrophin in skeletal muscle

normal

mdx

Morphology of dystrophic muscle

normal

mdx

DAPC localization in C57 wild-type muscle

 α -SARCOGLYCAN

γ-SARCOGLYCAN

H&E

DAPC is greatly reduced at the membrane of *mdx* skeletal muscle

DYSTROPHIN

β-DYSTROGLYCAN

SYNTROPHIN

 $\alpha\text{-}\mathsf{SARCOGLYCAN}$

γ-SARCOGLYCAN

H&E

MDA/*mdx*

- expression of a full-length dystrophin cDNA transgene in *mdx* skeletal muscle
 - muscle pathology prevented
 - DAPC restored to membrane
 - normal CK levels and force generation

This experiment showed that expression of a **14kb cDNA** (from a 2.5 Mb gene) **in skeletal muscle only** was sufficient to prevent all signs of muscular dystrophy in the *mdx* mouse.

Full-length dystrophin transgene and expression

Localization of transgenic dystrophin in striated muscles

Control mouse Transgenic mdx mouse

Prevention of *mdx* skeletal muscle pathology

b

mdx mouse

Transgenic mdx mouse

Relocalization of the DAPC

SDS-extracts of skeletal muscle

Prevention of abnormal CK levels and reduction in normalized force

CVBA/mdx

- expression of a dystrophin transgene deleted for exons 17-48 of the roddomain in *mdx* skeletal muscle. (Based on patient with mild phenotype.)
 - muscle pathology ameliorated
 - DAPC restored to membrane
 - almost normal muscle force generation
 - insight into uniform vs. variable expression

Full-length and Δ17-48 transgenic lines and phenotypes

	Quadriceps			Diaphragm			
	Level of expression	Central nuclei	M-pyruvate kinase (U/L)	Level of expression	Central nuclei	Specific force (kN/m ²)	
C57BI/10mdx	_	88.7%	12008 ± 4228(12)	-	54.8%	117 ± 9(3)	
C57BV10	1X(U)	0.67%	664 ± 202(10)	1X(U)	0.19%	$222 \pm 9(3)$	
8440CVAA	>5X(U)	1.9%	$684 \pm 114(7)$	2X(U)	0.34%	$249 \pm 21(5)$	
862CAA	2X(U)	1.0%	633 ± 50(7)	0.5X(U)	0.52%	$211 \pm 21(5)$	
852CAA	0.7X(U)	1.9%	$643 \pm 134(7)$	0.2X(SV)	1.2%	$205 \pm 20(5)$	
847CAA	1X(U)	5.8%	845 ± 153(7)	0.3X(V)	18.9%	$206 \pm 20(5)$	
8487CAVA	0.15X(V)	52.1%	7509 ± 2827(7)	<0.05X(V)	45.1%	148 ± 14(5)	
C57BI/10mdx	-	88.7%	11427 ± 1626(6)	-	54.8%	126 ± 19(5)	
C57BI/10	1X(U)	0.67%	503 ± 152(6)	1X(U)	0.19%	$237 \pm 23(5)$	
11808CVHBA	>10X(U)	3.0%	N/D	0.9X(U)	6.0%	$212 \pm 10(4)$	
11922CVHBA	>10X(V)	9.1%	$731 \pm 146(9)$	0.2X(U)	8.3%	$192 \pm 11(4)$	
11929CVHBA	0.7X(SV)	39.7%	$2281 \pm 1030(7)$	<0.05X(V)	46.2%	N/D	
11956CVBA3'	>10X(U)	7.1%	N/D	0.9X(U)	0.14%	N/D	
12042CVBA3'	>10X(V)	34.0%	$1692 \pm 362(8)$	0.65X(SV) -	8.9%	196 ± 17(4)	
12142CVBA	5X(U)	7.0%	813 ± 164(4)	0.7X(V)	12.8%	$194 \pm 28(4)$	
12157CVBA	0.4X(U)	10.2%	$1885 \pm 417(2)$	0.2X(V)	37.8%	$123 \pm 20(4)$	
12210CVBA	5X(U)	2.8%	N/D	0.1X(V)	40.8%	N/D	

CVBA/mdx

 This experiment showed that expression of a 5.5 kb (instead of a fulllength 14 kb) dystrophin cDNA was sufficient to greatly ameliorate the phenotypic signs of muscular dystrophy in the *mdx* mouse. The majority of the rod domain of dystrophin is not critical for protein function.

Expression of Δ17-48 transgene

MCA/mdx

- expression of a C-terminal dystrophin transgene (exons 63-79) encoding the entire DAPC binding region in *mdx* skeletal muscle
 - muscle pathology not improved
 - DAPC restored to muscle membrane
 - deficits in muscle force generation

Association of MCA dystrophin with the DAPC

MCA transgene is unable to prevent muscular dystrophy

mdx control MCA

MCA/mdx

This experiment showed that the restoration of the DAPC to the muscle membrane is not sufficient to prevent the phenotypic signs of muscular dystrophy

Δ64-67/*mdx*

- expression of a dystrophin transgene deleted for the β-dystroglycan binding site in *mdx* skeletal muscle
 - muscle pathology is not improved
 - DAPC (dystroglycans and sarcoglycans) are not restored to muscle membrane
 - deficits in muscle force generation

Dystroglycans and sarcoglycans are not restored to the membrane in Δ64-67/*mdx* skeletal muscle

DYSTROPHIN

 β -DYSTROGLYCAN

SYNTROPHIN

 α -SARCOGLYCAN

γ-SARCOGLYCAN

H&E

Restoration of DAPC to muscle membrane is necessary to prevent muscular dystrophy

 $\Delta 64-67/mdx$

This experiment together with MCA/*mdx* shows that restoration of the DAPC to the muscle membrane is necessary, but not sufficient to prevent the phenotypic signs of muscular dystrophy in the mdx mouse. These experiments together show that both the amino and carboxy terminal domains are required for normal dystrophin function.

Modular flexibility in spectrin-like repeats

Different levels and uniformity of transgene expression in different muscles

ΔH2-R19 ΔH2-H3ΔH2-R19,20 ΔR9-R16 ΔR1-R24

 μ dys Δ R4-R23

Some repeats are necessary for function, but not all repeats are required.

Table 1 Mini- and micro- dystrophin transgenic mouse % CN and specific force									
	Percentage of centrally local	fibers with ted nuclei	Spec						
	Diaphragm	Quadriceps	Diaphragm	EDL	TA				
C578I/10 (Lmax)	<1	<1	200 ± 8"	222 ± 8*	235 ± 13*				
C578I/10 (6 mos)	<1	<1	215 ± 17"	ND	ND				
mdx (1 mos)	55	71	119 ± 5 ^b	181±6°	177 ± 8 ^b				
mdx (4 ma)	51	64	76±7°	ND	ND				
AH2-R19 (1 min)	1	<1	207 ± 11*	231 ± 8*	252 ± 23*				
AH2-H3 (1-mm)	5	4	150 ± 14 ⁴⁴	194 ± 104	ND				
AH2-R19,R20 (3 mont)	25	27	$104 \pm 14^{\circ}$	206 ± 14	ND				
∆R9-R16 (bet)	5	34	145 ± 18^{6}	ND	ND				
AR9-R16 queries	1	9	ND	ND	ND				
AR1-R24 (Lmm)	65	74	ND	ND	ND				
AR4-R23 (Lmon)	<1	<1	ND	ND	159±12"				
AR4-R23 (6 mm)	<1	<1	148 ± 23 ^{nh}	ND	ND				
AR2-R21 (Januar)	<1	12	ND	ND	201 ± 6				
ΔR2-R21 (6-mail)	<1	15	161 ± 8 ^{ab}	ND	ND				
AR2-R21+H3 (I moti	<1	27	ND	ND	183 ± 17°				
AR2-R21+H3 (5 most	<1	52	162 ± 11**	ND	ND				

The strength of comprehensive functional and histological analyses

Truncated dystrophins can halt or reverse, in addition to prevent, the dystrophic phenotype

Utrophin/mdx transgenic

Nature (1996) 384:349

Mini-utrophin restores DGC and histology (and function)

Mouse models

mdx Dystrophin-deficient

normal mouse lifespan (2 yrs)mild skeletal muscle fibrosismild cardiomyopathy

Het Dystrophindeficient; missing 1 copy of utrophin

normal mouse
lifespan (2 yrs)
severe skeletal
muscle fibrosis
Cardiomyopathy
progression
more similar to
DMD patients

dko Dystrophin/utrophin-deficient

Dies 10-12 weeks-of-agemild skeletal muscle fibrosissevere cardiomyopathy

Cell (1997) 90:717; J Neurol Sci. Jan 15;264(1-2):106-11.

Dko mice and DMD patients show similar patterns of myocardial injury prior to whole heart dysfunction (reduced EF)

•Cardiac contractile dysfunction

•Unregulated MMP remodeling

•Collagen scarring

Collagen I

Fibroblasts

•Normal Ejection Fraction

Some other *mdx* double mutant models

- Cmah/mdx
- Telomerase/*mdx*

GRMD = Golden Retriever Muscular Dystrophy

- The homologue of the Duchenne locus is defective in Xlinked muscular dystrophy of dogs. (Nature, 1988 Jul 14;334(6178):154-6)
- Eccentric contraction injury in dystrophic canine muscle. (Arch Phys Med Rehabil. 2002 Nov;83(11):1572-8)
- Chronic administration of membrane sealant prevents severe cardiac injury and ventricular dilatation in dystrophic dogs. (J Clin Invest. 2010 Apr;120(4):1140-50.)
- Age-matched comparison reveals early electrocardiography and echocardiography changes in dystrophin-deficient dogs. (Neuromuscul Disord. 2011 Jul; 21(7):453-61.)
- Microdystrophin ameliorates muscular dystrophy in the canine model of duchenne muscular dystrophy. (Mol Ther. 2013 Apr;21(4):750-7)