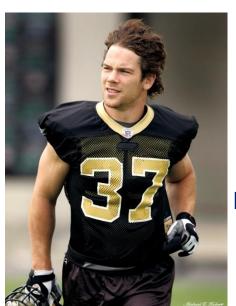
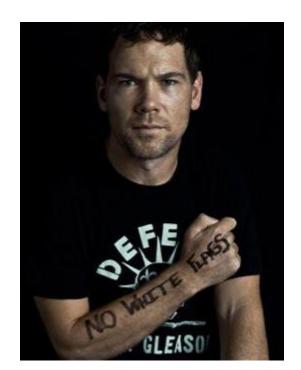
MVIMG 7470

Neuromuscular Biology and Disease

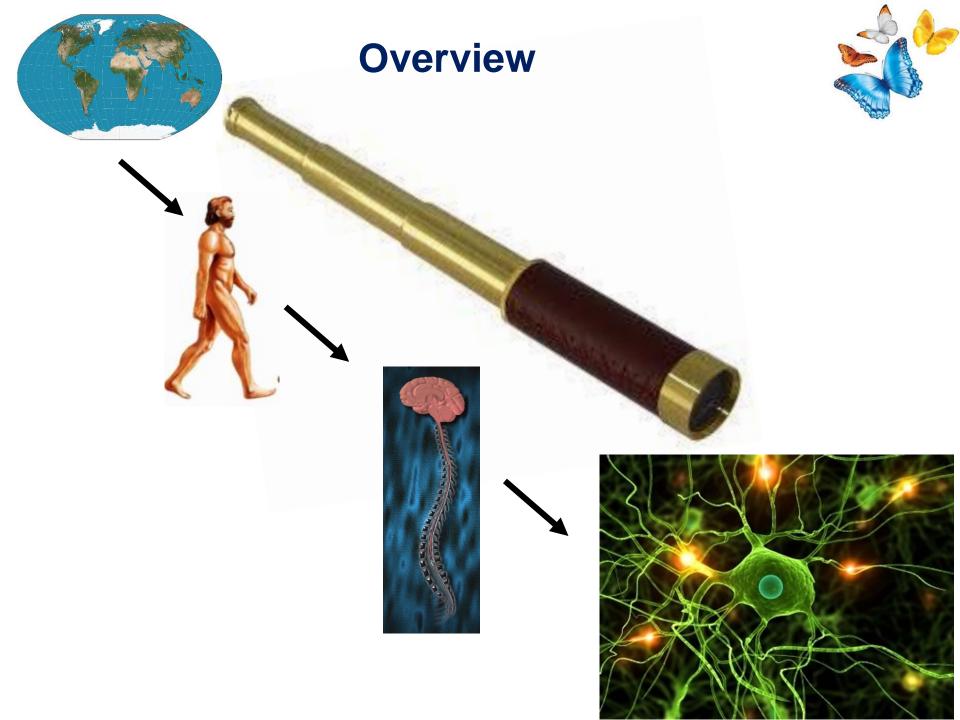
The C9ORF72 repeat expansion in ALS


Kathrin Meyer, PhD
Nationwide Children's Hospital
Center for Gene Therapy
Columbus, Ohio, USA

The C9ORF72 repeat expansion in ALS

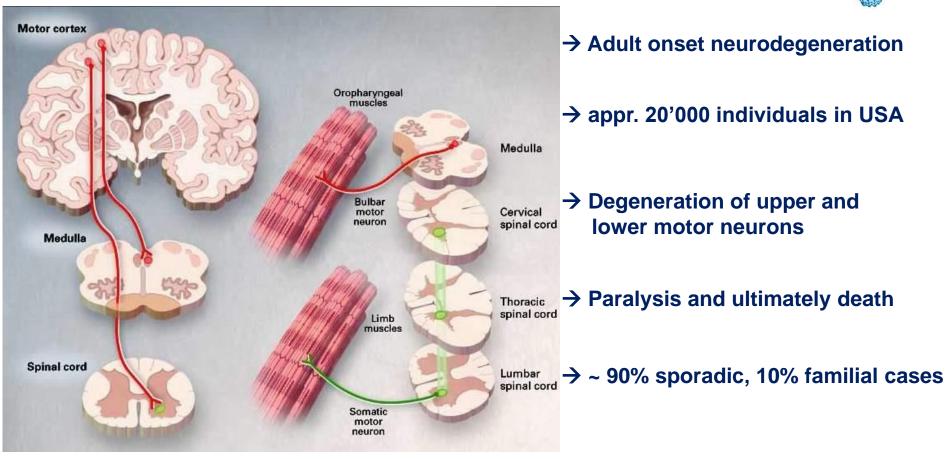


Steve Gleason


It's complicated...

...sometimes frustrating...

more questions than answers!



Amyotrophic Lateral Sclerosis

- → Various disease causing genes identified (SOD1, TDP-43, FUS, C9ORF72)
- → Vast majority of cases: cause unknown

Recent efforts have revealed new genes involved in ALS

Neuron Article

A Hexanucleotide Repeat Expansion in *C9ORF72* Is the Cause of Chromosome 9p21-Linked ALS-FTD

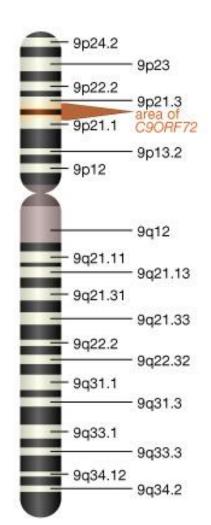
Alan E. Renton, 1,38 Elisa Majounie, 2,38 Adrian Waite, 3,38 Javier Simón-Sánchez, 4,6,38 Sara Rollinson, 6,38 J. Raphael Gibbs, 7,8,38 Johnifer C. Schymick, 1,38 Hannu Laaksovirta, 9,38 John C. van Swieten, 4,5,38 Liisa Myllykangas, 10 Hannu Kalimo, 10 Anders Paetau, 10 Yevgeniya Abramzon, 1 Anne M. Remes, 11 Alice Kaganovich, 12 Sonja W. Scholz, 2,13,14 Jamie Duckworth, 7 Jinhui Ding, 7 Daniel W. Harmer, 15 Dena G. Hernandez, 2,8 Janel O. Johnson, 1,8 Kin Mok, 8 Mina Ryten, 8 Danyah Trabzuni, 8 Rita J. Guerreiro, 8 Richard W. Orrell, 16 James Neal, 17 Alex Murray, 18 Justin Pearson, 3 Iris E. Jansen, 4 David Sondervan, 4 Harro Seelaar, 5 Derek Blake, 3 Kate Young, 8 Nicola Halliwell, 6 Janis Bennion Callister, 6 Greg Toulson, 6 Anna Richardson, 19 Alex Gerhard, 19 Julie Snowden, 19 David Mann, 19 David Neary, 19 Michael A. Nalls, 2 Terhi Peuralinna, 9 Lilja Jansson, 9 Veli-Matti Isoviita, 9 Anna-Lotta Kaivorinne, 11 Maarit Hölttä-Vuori, 20 Elina Ikonen, 20 Raimo Sulkava, 21 Michael Banatar, 22 Joanne Wuu, 23 Adriano Chio, 24 Gabriella Restagno, 25 Giuseppe Borghero, 26 Mario Sabatelli, 27 The ITALSGEN Consortium, 28 David Heckerman, 29 Ekaterina Rogaeva, 30 Lorne Zinman, 31 Jeffrey D. Rothstein, 14 Michael Sendther, 32 Carsten Drepper, 32 Evan E. Eichler, 33 Can Alkan, 33 Ziedulla Abdullaev, 43 Svetlana D. Pack, 34 Amalia Dutra, 38 Evgenia Pak, 35 John Hardy, 8 Andrew Singleton, 2 Nigel M. Williams, 3,38 Peter Heutink, 4,38 Stuart Pickering-Brown, 6,38 Huw R. Morris, 3,36,37,38 Pentti J. Tienari, 9,38 and Bryan J. Traynor, 1,14,38,*

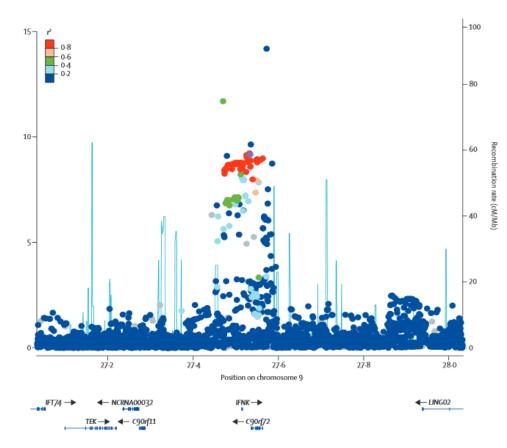
Article

2011: 2 publications linking a repeat expansion in C9ORF72 to ALS and FTD

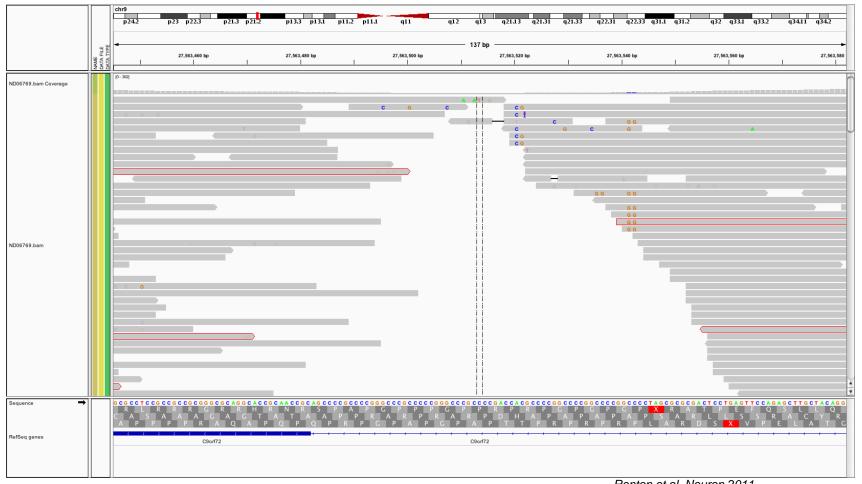
How did they discover the repeat?

Expanded GGGCC Hexanucleotide Repeat in Noncoding Region of *C9ORF72* Causes Chromosome 9p-Linked FTD and ALS

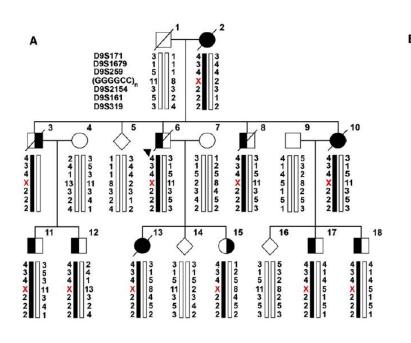

Mariely DeJesus-Hemandez,^{1,10} Ian R. Mackenzie,^{2,10,*} Bradley F. Boeve,³ Adam L. Boxer,⁴ Matt Baker,¹ Nicola J. Rutherford,¹ Alexandra M. Nicholson,¹ NiCole A. Finch,¹ Heather Flynn,⁵ Jennifer Adamson,¹ Naomi Kouri,¹ Aleksandra Wojtas,¹ Pheth Sengdy,⁶ Ging-Yuek R. Hsiung,⁶ Anna Karydas,⁴ William W. Seeley,⁴ Keith A. Josephs,³ Giovanni Coppola,⁷ Daniel H. Geschwind,⁷ Zbigniew K. Wszolek,⁸ Howard Feldman,^{6,9} David S. Knopman,³ Ronald C. Petersen,³ Bruce L. Miller,⁴ Dennis W. Dickson,¹ Kevin B. Boylan,⁸ Neill R. Graff-Radford,⁸ and Rosa Rademakers^{1,*}

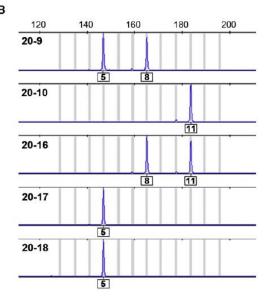

¹Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL 32224, USA

Association of risk locus in the region of C9ORF72



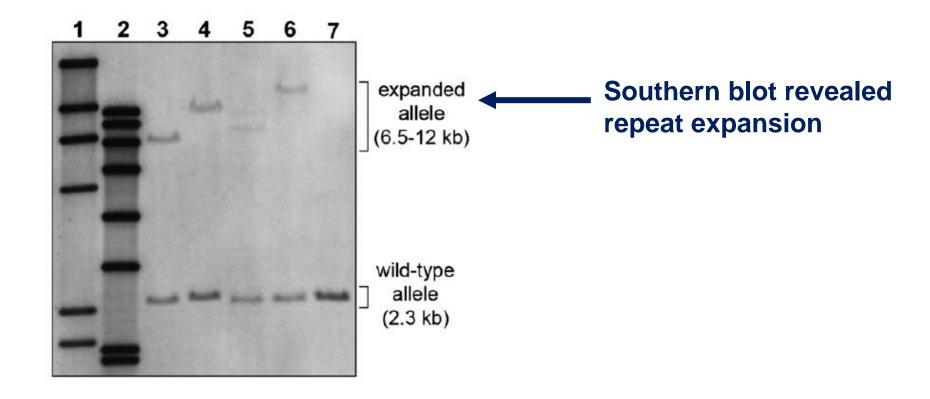
Shatunov et al., Lancet Neurol 2010


Next generation sequencing methods failed to amplify the repeat containing region...

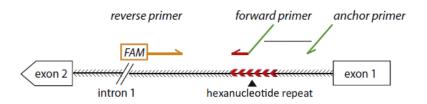


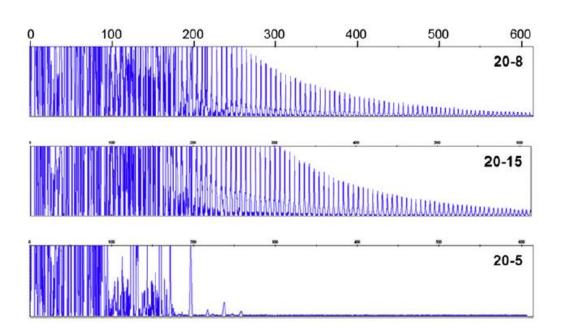
Affected individuals seemed all homozygous via PCR based detection methods...

Or is amplification inhibited?

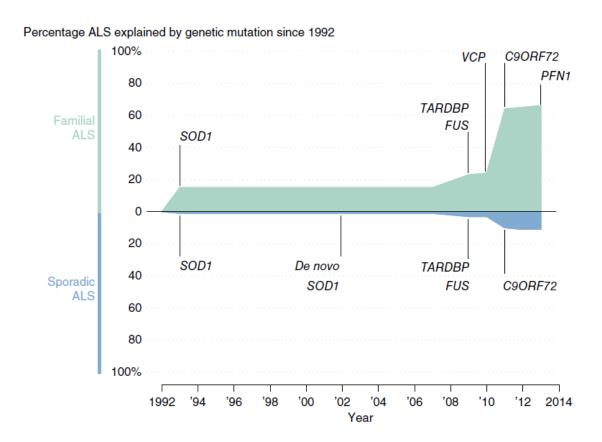

DeJesus-Hernandez, Neuron 2011

Back to the ancient methods...


Back to the ancient methods...

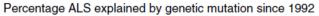


Confirmation with repeat primed PCR methods...



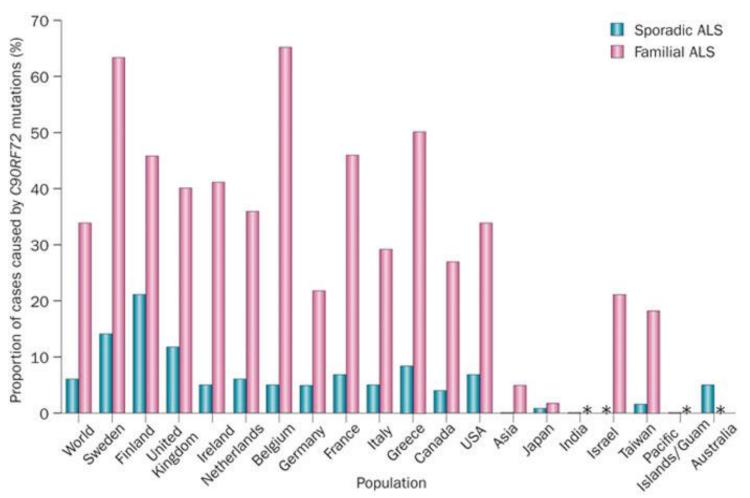
Not able to determine repeat size

Why is C9ORF72 important in ALS?



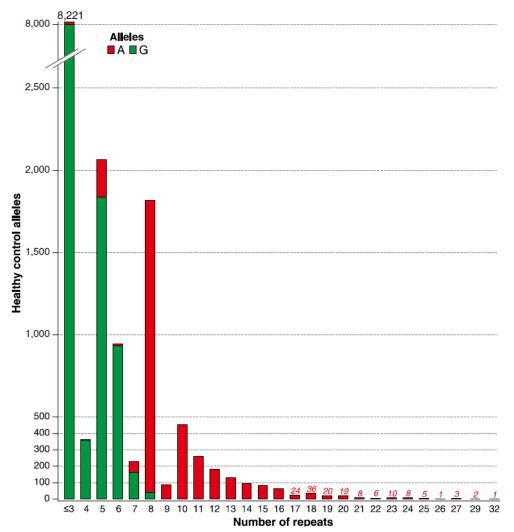
C9ORF72 mutations are the most frequent cause of familial ALS and the most frequent known cause of sporadic ALS

Why is C9ORF72 important in ALS?


Where does it come from?

Origin and distribution of C9ORF72

High prevalence of the mutation in northern Europe

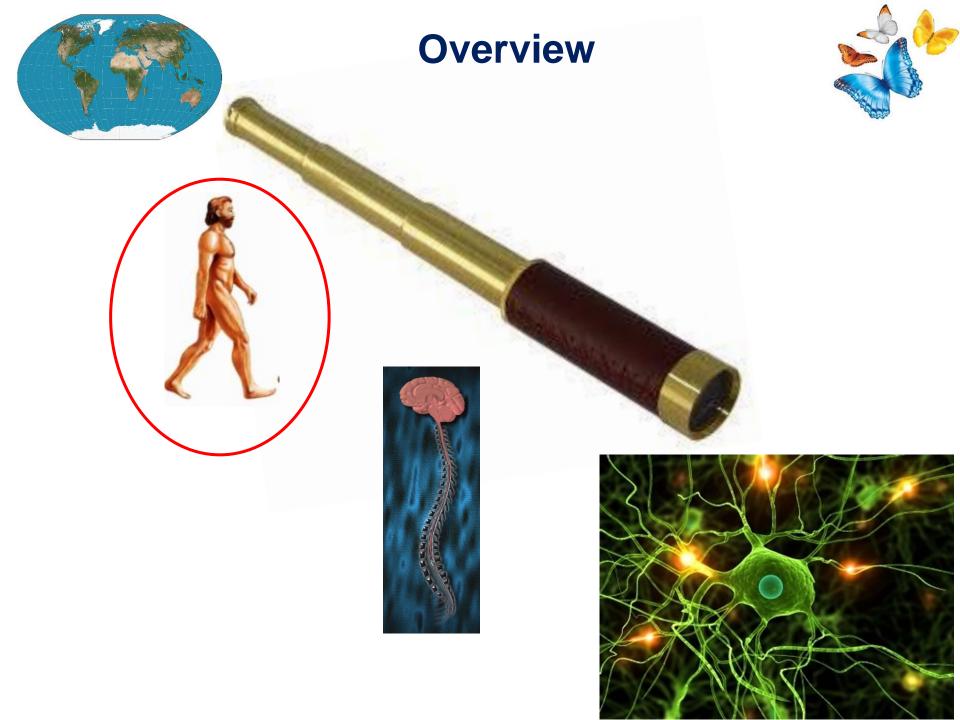

Rademaker and van Blitterswijk, Nature Rev Neurology 2012

Distribution of this mutation worldwide varies extensively

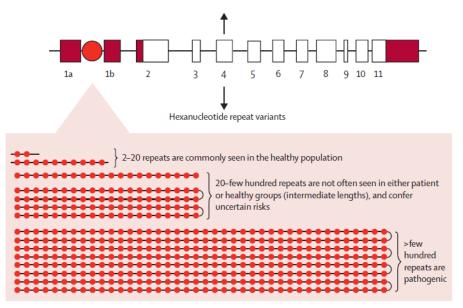
Origin and distribution of C9ORF72

Beck et al, the American J of Human Genetics, 2013

- Risk allele is common in healthy population in europe
- Associated with higher instability and bigger repeat length in healthy individuals
- Most, but not all patients with C9ORF72 expansions carry this risk haplotype
- Even without repeat expansion, allele still associates with disease
- ➢ Is the repeat or the instability of the region inherited?

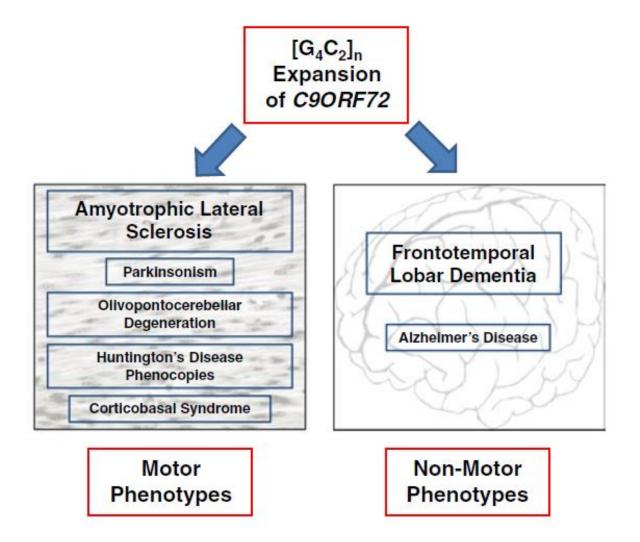

Origin and distribution of C9ORF72

Existence of single founder allele spread by the Vikings?


- ➤ Theory currently debated high prevalence in certain other populations difficult to be explained by this migration (S Europe + E Asia)
- ➤ Larger study including 82 SNPs indicates that this founder haplotype is likely older found in European, African and distant Asian populations (Smith et al, Eur J Hum Genet 2013)

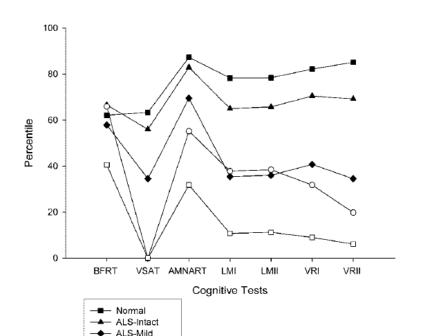
Pathogenic C9ORF72 repeat size

Rohrer et al., Lancet Neurol 2015


- Normal repeat size = variable more than 90% of Europeans 2-10 repeats
- Small: Larger than 30 repeats can be found in healthy individuals, although rare

- Intermediate: 20 several hundred can be pathogenic or not
- Big: Repeat size in patients usually several hundreds or thousands of repeats

Clinical spectrum broad, even within families



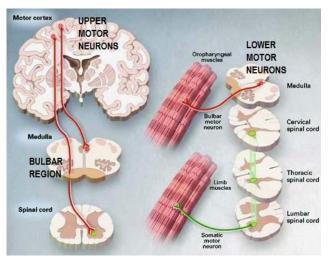
Mixed phenotype might be more common than usually thought in general

Up to 50% of sporadic ALS cases could show cognitive impairments

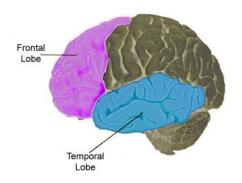
—O— ALS-Moderate
—D— ALS-Severe

Figure. Comparison of cognitive performance in normal controls vs four amyotrophic lateral sclerosis groups.

BFRT = Benton Facial Recognition Test; VSAT = Verbal Series Attention Test; AMNART = American National Reading Test; LMI = Logical Memory subtest from the Wechsler Memory Scale-Revised (immediate recall);


LMII = Logical Memory subtest from the Wechsler Memory Scale-Revised (delayed recall); VRI = Visual Reproduction subtest from the Wechsler Memory Scale-Revised (immediate recall); VRII = Visual Reproduction subtest from the Wechsler Memory Scale-Revised (delayed recall).

Ringholz et. al, Neurology 2005



ALS: Amyotrophic Lateral Sclerosis

- Most common adult onset motor neuron disorder
- 1-2/100'000 individuals, onset
 50-60 years
- Average survival ~ 3 years

FTD: Frontotemporal Dementia

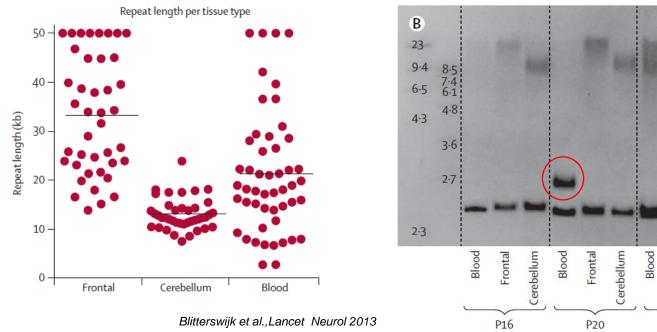
- Second most common form of presenile dementia after Alzheimer's disease
- 10-30/100'000 individuals, onset 45-65 years
- Average survival ~ 7 years

Short disease length = increased life time risk

Diverse clinical phenotype implicates presence of disease modifiers

Variation in time and type of onset

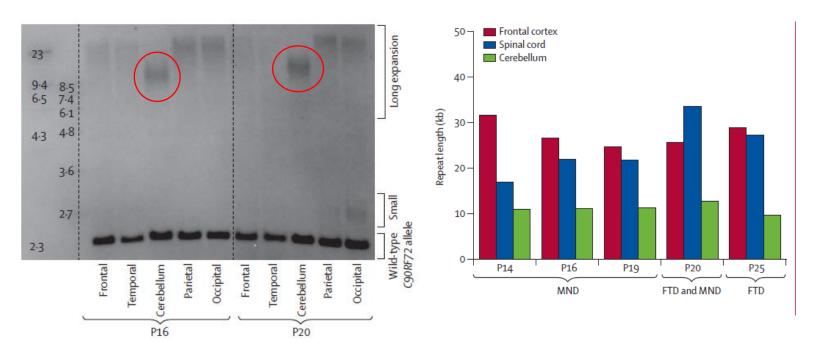
- Penetrance = age dependent, but nearly 100% at the age of 80
- Several studies show overrepresentation of bulbar onset for C9ORF72-ALS
- Incidence of dementia or family history of dementia is higher in C9ORF72-ALS cases
- Potential evidence for younger age of disease onset in ALS caused by C9ORF72 repeat expansions
- Potential evidence for shorter survival of C9ORF72 ALS cases compared to non-C9ORF72 cases
- ➤ Gender might be important males showed earlier onset in 1 study
 Reviewed in Cooper-Knock et al, Acta Neuropathol 2013



Somatic heterogeneity of C9ORF72 repeat expansions

Long expansion

P19


- → Tissue specific variation in repeat size
- → Expansions can increase throughout life span
- → Substantial problem for testing of patients due to CNS sample availability

Somatic heterogeneity of C9ORF72 repeat expansions

Repeat size in the CNS varies between regions

Blitterswijk et al., Lancet Neurol 2013

 Repeats are shorter and less variable in the cerebellum (mean ~ 1'667 vs 5'250 repeats in frontal cortex)

> Similar observations found in mouse models of other repeat expansions

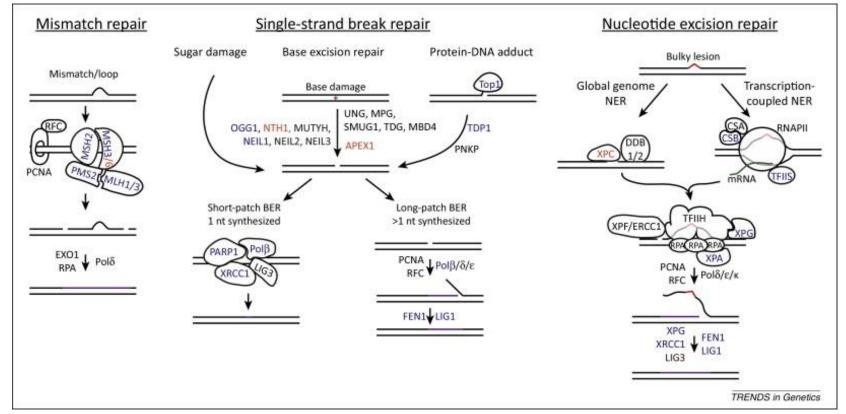
Table 3. Tissue-specificity phenotypes found in the mouse models in Table 2

Mouse model	Repeat length	Brain	Cerebellum	Cerebral cortex	Heart	Kidney	Liver	Skeletal muscle	Spleen	Striatum
DM1 knock in	84	++			_	+++	++	+		
DM300	360	++	_		_	++	+++	+		
Hdh ^{Q111}	111		+	+	_	++	+++		-	+++
SCA1	154		_	++	+	++	+	+		+++
SCA7-CTCF-I-mut	94		+	++	_	+++	+++			+++
SCA7-CTCF-I-wt	92		+	++	_	+	+++			++
R6/1	116	+++	_	+	_	++	+++		-	+++
R6/2	144		_	+	_	+	+		-	+++

Blank, not tested; -, no instability detected; + to +++, marginal to extreme instability.

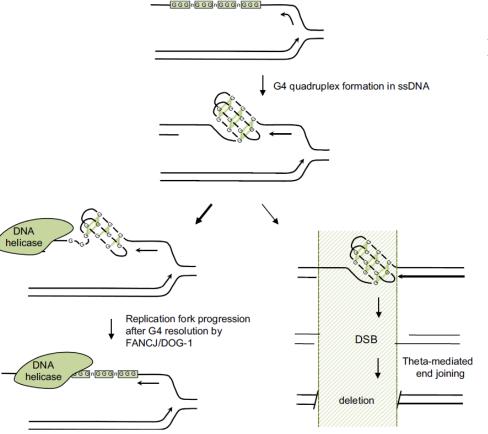
This list was updated from that in [108]. Only tissues with measurements in at least three different mouse models are shown.

Dion, Trends in Genetics, 2014


Cerebellum seems to have few alterations in repeat length in different mouse models of repeat expansion

How to cope with DNA damage

- > Approximately 100'000 lesions in DNA PER cell PER day
- 3 major repair pathways were shown to participate in repeat instability



How to cope with DNA damage

> A 4th one was recently suggested to be involved in repeat instability

 G-quadruplexes were recently observed from C9ORF72 repeat expansion DNA

CrossMark

Characterization of DNA G-quadruplex species forming from C90RF72 G₄C₂-expanded repeats associated with amyotrophic lateral sclerosis and frontotemporal lobar degeneration

Primož Šket ^{a.b.}, Jure Pohleven ^c, Anja Kovanda ^{c.d}, Maja Štalekar ^c, Vera Župunski ^e, Matja Zalar ^a, Janez Plavec ^{a.b.e.**}, Boris Rogelj ^{c.d.*}

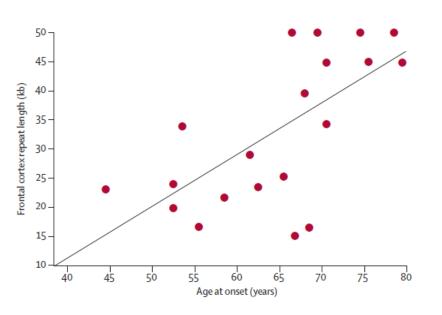
- *Slovenian NMR Centre, National Institute of Chemistry, Ljubljana, Slovenia
- ^bEN-FIST Center of Excellence, Ljubljana, Slovenia
- ^c Department of Biotechnology, Jozef Stefan Institute, Ljubljana, Slovenia
- d Biomedical Research Institute BRIS, Ljubljana, Slovenia * Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia

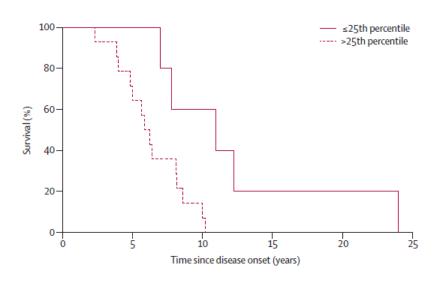
- Repeat expansions per se have very high mutation rates
- Mutation rates depend on different DNA repair pathways and often lead to tissue specific disease phenotypes
- > Different tissues preferably use different repair pathways
- Sensitivity to different types of damage depend on the mitotic state and metabolic rate and age
- Repeat instability could depend on frequency of repair initiation, variation in repair protein expression, replication rate, transcription and chromatin structure
- Recently described DNA structure formation requires special DNA helices for solvation

 Reviewed in Van Kregten and Tijsterman, Exp Cell Res 2014

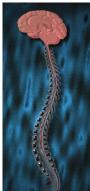
Repeat length and disease

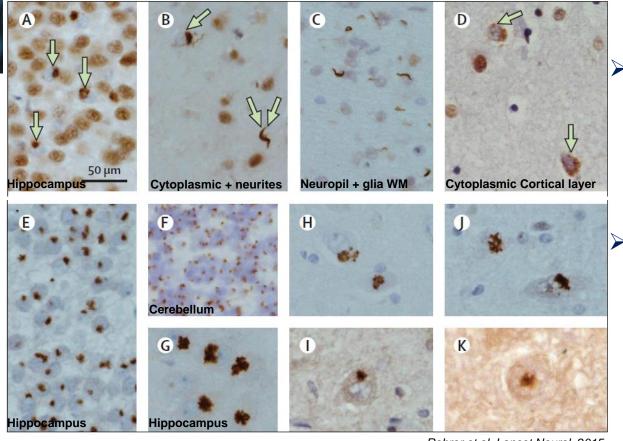
> Pure ALS:


- no phenotypic aspect significantly correlated with length of expansion

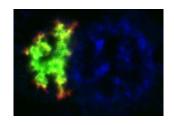


FTLD:


- Correlation: age of onset and repeat size in frontal cortex
- Correlation: reduced survival and repeats < 11.1kb in cerebellum

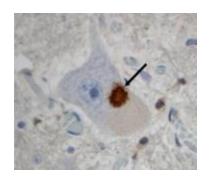

Blitterswijk et. al, Lancet Neurology 2013

These studies might require the analysis of larger numbers of cases due to the noise introduced by additional modifiers (similar to Myotonic Dystrophy DM1 – 100+ patients needed)


Pathology of C9ORF72 repeat expansions

TDP43+ inclusions

Star-like p62+/TDP43inclusions containing polypeptides


Rohrer et al, Lancet Neurol, 2015

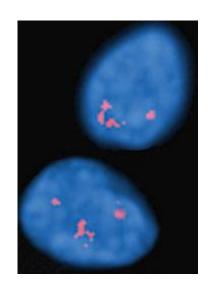
Dipeptide repeat protein inclusions are unique and highly characteristic for C9ORf72 cases

Pathology of C9ORF72 repeat expansions

TDP43+ inclusions correlate with clinical phenotype and pattern of neurodegeneration

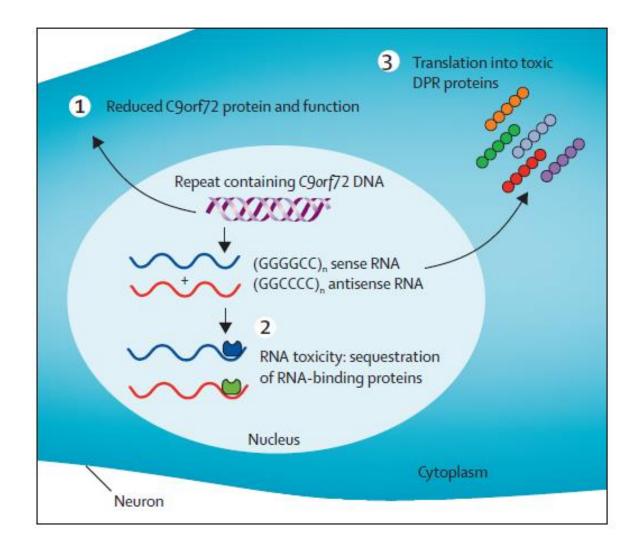
C9ORF72 FTD patients with no signs of ALS: significantly less degeneration + TDP43 pathology in lower motor neurons compared to patients with mixed phenotype

Stewart et al, Acta Neuropathol 2012

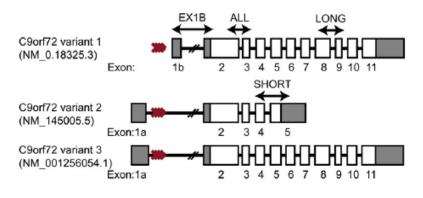

C9ORF72 ALS patients: predominant degeneration and TDP43+ inclusions in upper, lower and brainstem and spinal cord motor neurons (extra-motor regions are only mildly affected)

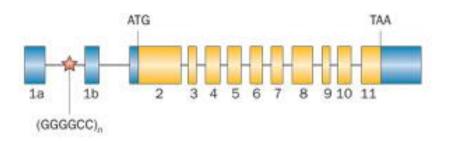

Pathology of C9ORF72 repeat expansions

RNA foci


- > RNA foci in the nucleus were identified in FTD and ALS patients in the cortex and spinal cord in many studies
- These are common hallmarks of many repeat expansion disorders

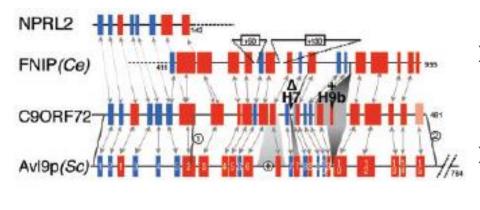
Mechanisms of C9ORF72 mediated neurodegeneration




Mechanisms of C9ORF72 mediated neurodegeneration

1. Haploinsufficiency

Waite et al, Neurobiology of Ageing, 2014

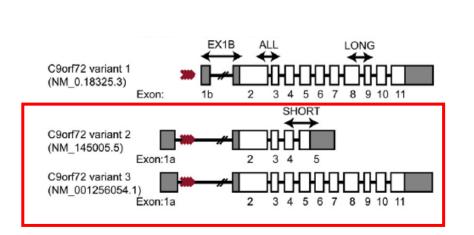


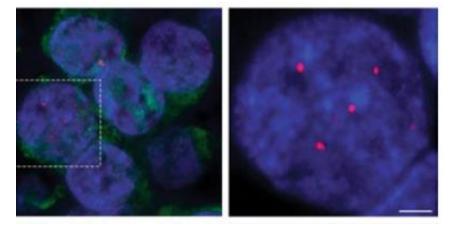
- > 3 mRNA variants described
- 2 potential protein isoforms
- Reduction of abundance of all 3 transcripts has been reported
- Evidence for v1 being more affected (repeat in promoter)
- Model organisms C. elegans and zebrafish show that C9ORF72 loss is pathogenic for motor neurons and causes motor deficits

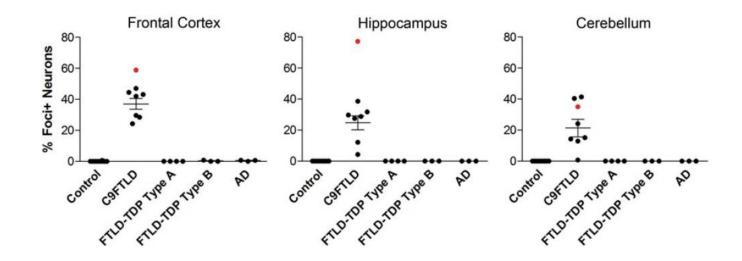
1. Haploinsufficiency

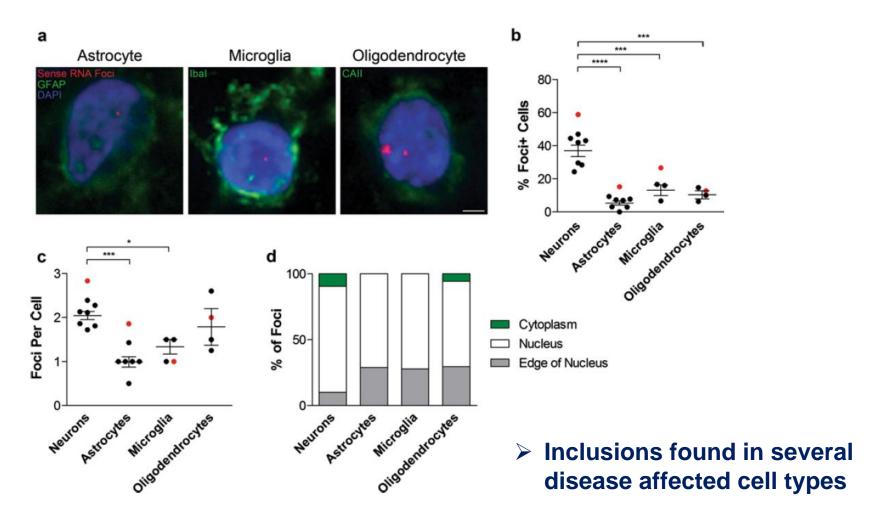
Levine, Bioinformatics 2013

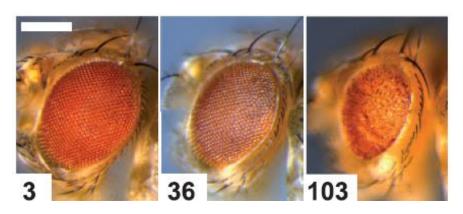
- C9ORF72 protein has strong homology with DENN-like proteins
- DENN protein family involved in membrane trafficking
- Members of this protein family have been linked to neurodegeneration

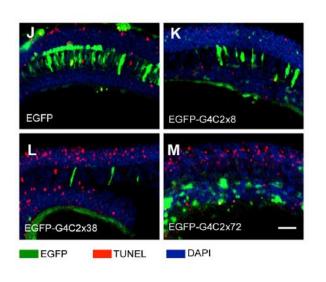


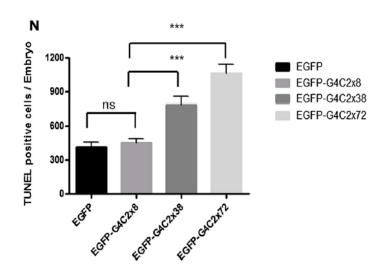

1. Haploinsufficiency


- Yeast homologue of C9ORF72 has been linked to sorting of endosomelocalized proteins to cell surface (avoidance of lysosomes)
- Is endo-lysosomal pathway affected by reduced C9ORF72 protein levels?
- Disease modifying gene in FTD TMEM106B is involved in lysosome function and transport in dendrites
- p62+ inclusion pathology could point towards dysfunctional lysosomal degradation
- Mutations in another gene involved in lysosomal degradation of proteins (CHMP2B) causes FTD in a Danish family

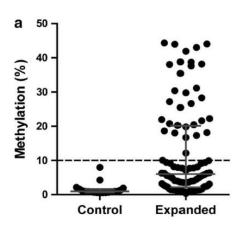





- Repeat RNA foci frequently found in affected brain regions in FTD
- > Burden correlates with clinical disease phenotype
- Overexpression of repeat itself causes neurodegeneration in several animal models (zebrafish, drosophila)



Mizielinska, Science Reports 2014

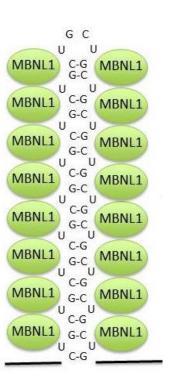


- ➤ Overexpression of 38x or 72x repeats sufficient to cause neurodegeneration in neuronal cell lines and zebrafish Le et al, Cell Reports 2013
- ➤ Likely via sequestration of RNA binding proteins involved in nuclear retention, pre-mRNA splicing or RNA trafficking (hnRNP H)

DNA hypermethylation which reduces repeat RNA expression is a disease modifier in FTD

- Hypermethylation is associated with later age at death in FTD, longer disease duration
- Hypermethylation is associated with shorter repeat length


> This correlation was not observed for ALS in the same study



2. RNA toxicity

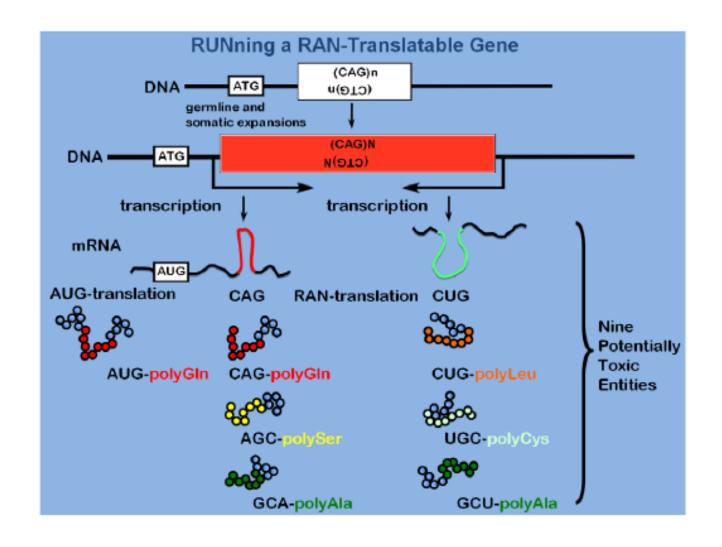
Repeat RNA was shown to be toxic in other expansion disorders (DM1 and DM2) by sequestration of RNA binding proteins (muscle-blind-like proteins)

3. Dipeptide repeat protein translation - RAN

OPEN & ACCESS Freely available online

PLOS GENETICS

Review


Repeat Associated Non-ATG Translation Initiation: One DNA, Two Transcripts, Seven Reading Frames, Potentially Nine Toxic Entities!

Christopher E. Pearson^{1,2}*

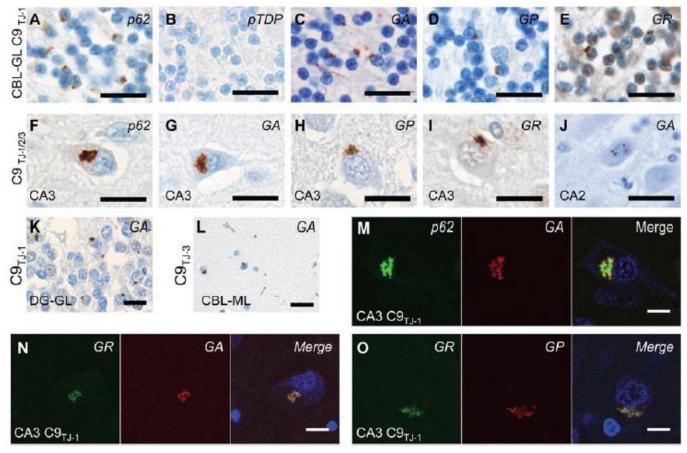
1 Program of Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada, 2 Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada

3. Dipeptide repeat protein translation - RAN

Initially discovered in SCA8, found in other repeat expansion disorders

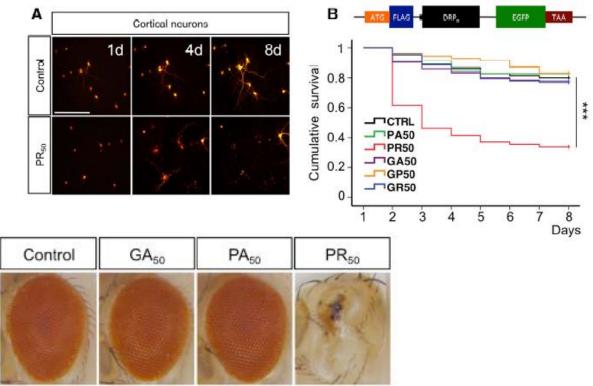
Table 1. In vitro characteristics and in vivo detection of RAN translation

Disorder	Repeat	RAN protein (in vitro)	Threshold (in vitro)	Tissue (in vivo)	Refs.
SCA8	CAG	polyGln	>42 repeats	ATG-polyGln, cerebellum and brain stem (14)	(11)
		polyAla	>73 repeats	Cerebellum	(11)
		polySer	>58 repeats	ND	(11)
DM1	CAG^{a}	polyGln	ND	Myoblasts, skeletal muscle, peripheral blood leukocytes	(11)
FXTAS	CGG	polyGly	>30 repeats	Frontal cortex, cerebellum, hippocampus	(24)
		polyAla	>88 repeats	ND	(24)
		polyArg	UD	ND	(24)
ALS/FTD	GGGGCC	polyGlyPro	>145 repeats	Cerebellum, hippocampus, iPSC-derived neurons, neocortex, medial and lateral geniculate nuclei, testes	(25-27)
		polyGlyAla	>38 repeats	Cerebellum, hippocampus	(26)
		polyGlyArg	UD	Cerebellum, hippocampus	(26)

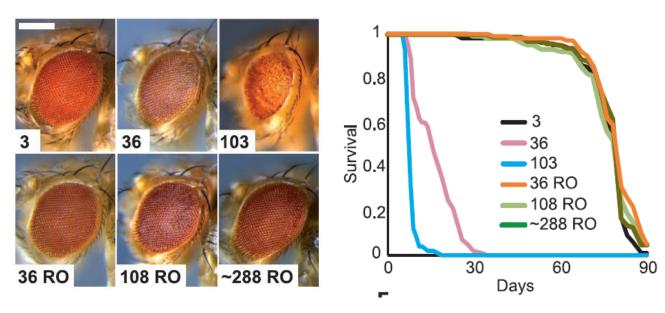

ND, not examined and not determined; UD, examined but undetermined.

^aAntisense transcript.

- 3. Dipeptide repeat protein translation RAN
- Many studies on C9ORF72 found evidence for DRPs in C9ORF72 ALS and FTD



Mori, Science Report 2013


- 3. Dipeptide repeat protein (DRP) translation RAN
- Overexpression of Proline-Arginie DRP is toxic in vitro and in vivo

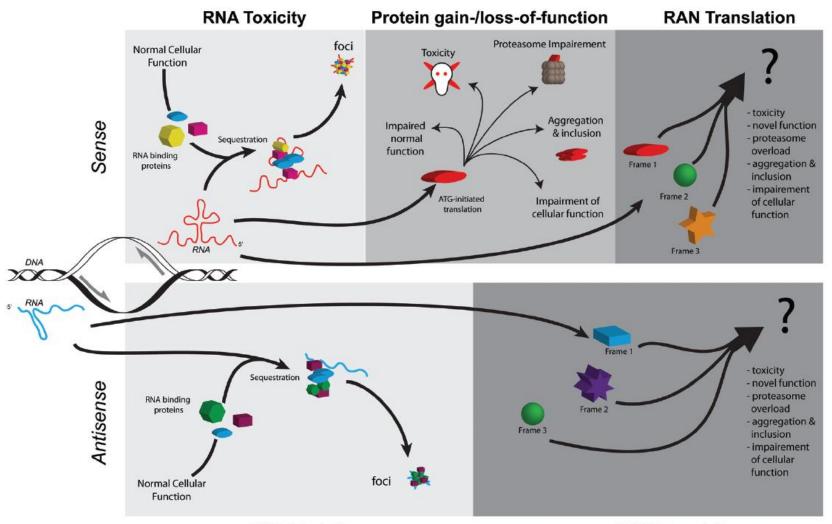
3. Dipeptide repeat protein (DRP) translation - RAN

Mizielinska, Science Reports 2014

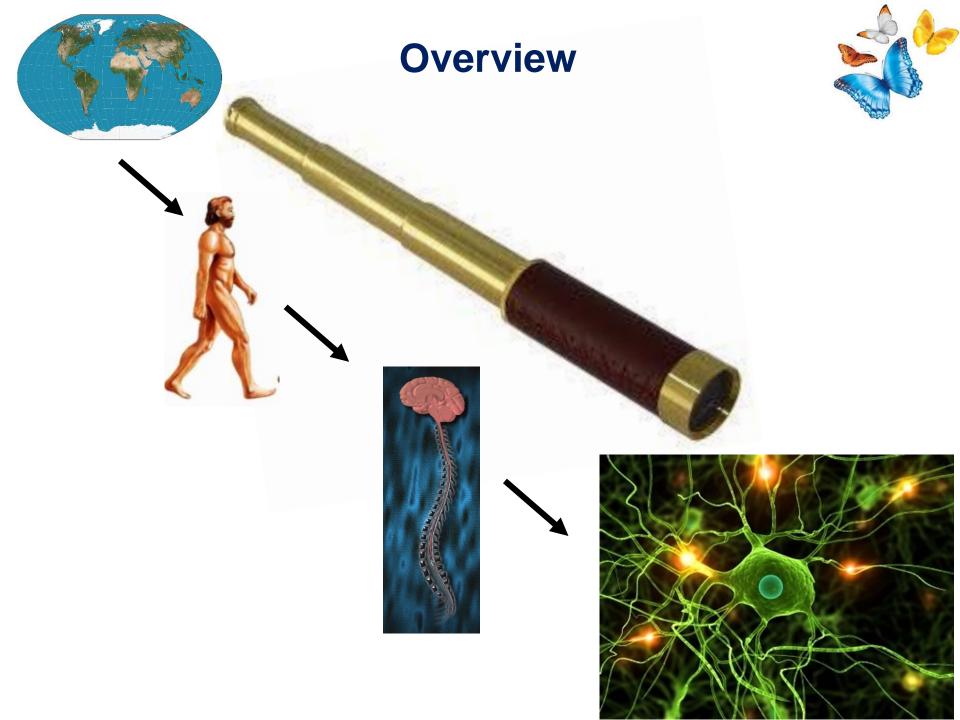
- > RNA repeats that are not translated do not cause neurodegeneration
- Repeat RNA toxicity and DRP peptide production seem to be linked

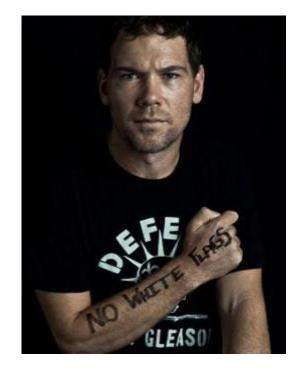
3. Dipeptide repeat protein translation - RAN

But...dipeptide repeat protein pathology does not always seem to correlate with either phenotype or degeneration pattern


More studies will be needed to decipher the correlation between disease course, clinical manifestation and DRPs

Davidson et al. Acta Neuropathol. Communications 2014, 2:70, Mackenzie, Acta Neuropathol. 2013, Reviewed in Mann, Neurobiology of Aging 2014


Summary of potential toxic mechanisms



RNA Toxicity

RAN Translation

Thank you!

Other repeat expansion disorders causing neurological disorders

Neurological disorders caused by expanded repeats.

Disease	Repeat Unit	Repeat Locus	Repeat Location	Affected Gene	Disease Causing Repeat Length	Mechanisms of Pathogenesis
Myotonic Dystrophy type I (DM1)	CTG	19q13	3' UTR	DMPK	50-6500	Altered RNA function
Myotonic Dystrophy type 2 (DM2)	CCTG	3q21	Intron	CNBP	75-11,000	Altered RNA function
Spinocerebellar ataxia 1 (SCA1)	CAG	6p23	Coding	ATXN1	> 44	Polyglutamine gain-of-function
Spinocerebellar ataxia 2 (SCA2)	CAG	12q24	Coding	ATXN2	> 32	Polyglutamine gain-of-function
Spinocerebellar ataxia 3 (SCA3)	CAG	14q24-q32	Coding	ATXN3	> 52	Polyglutamine gain-of-function
Spinocerebellar ataxia 6 (SCA6)	CAG	19p13	Coding	CACNAIA	20-33	Polyglutamine gain-of-function
Spinocerebellar ataxia 7 (SCA7)	CAG	3q21	Coding	ATXN7	37-460	Polyglutamine gain-of-function
Spinocerebellar ataxia 8 (SCA8)	CTG/CAG	13q21	3' UTR	ATXN8	80-1300	Polyglutamine gain-of-function
Spinocerebellar ataxia 10 (SCA10)	ATTCT	22q13	Intron	ATXN10	800-4500	Altered RNA function
Spinocerebellar ataxia 12 (SCA12)	CAG	5q31-q33	5' UTR	PPP2R2B	55-78	Unknown
Spinocerebellar ataxia 17 (SCA17)	CAG	6q27	Coding	TBP	49-66	Polyglutamine gain-of-function
Spinocerebellar ataxia 31 (SCA 31)	TGGAA	16q21-q22	Intron	TK2-BEAN	2.5- to 3.8-kb	RNA gain-of-function
Spinocerebellar ataxia 36 (SCA 36)	GGCCTG	20p13	Intron	NOP56	1500-2500	RNA gain-of-function
Fragile X mental retardation 1 (FMR1)	CGG	Xq27	5' UTR	FMR1	> 200	Altered RNA function
Fragile X-associated tremor ataxia syndrome (FXTAS)	CGG	Xq27	5' UTR	FMR1	55-200	RNA gain-of-function
Fragile X mental retardation 2 (FMR2)	CCG	Xq28	5' UTR	FMR2	200-900	Loss of protein function
Huntington's disease (HD)	CAG	4p16	Coding	HTT	> 35	Polyglutamine gain-of-function
Huntington's disease-like 2 (HDL2)	CTG	16q24	3' UTR	JPH3	>41	Altered RNA function
Friedreich's Ataxia (FRDA)	GAA	9q13	Intron	FXN	66-1700	Loss of protein function
Epilepsy progressive myoclonia (EPM1)	CCCCGCGCGCGCGCG	21q22	Promoter	CSTB	30-75	Loss of protein function
Oculopharyngeal muscular dystrophy (OPMD)	GCG	14q11	Coding	PABPN1	11-17	Polyalanine gain-of-function
Spinal and bulbar muscular atrophy (SBMA)	CAG	Xq12	Coding	AR	> 37	Polyglutamine gain-of-function
X-linked mental retardation	GCG	Xp21	Coding	ARX	17-23	Loss of protein function
Dentatorubral-pallidoluysian atrophy (DRPLA)	CAG	12p13	Coding	ATN1	48-93	Polyglutamine gain-of-function
ALS and/or FTD	GGGGCC	9p21	Intron	C9ORF72	Up to thousands	RNA gain-of-function?

For more information we refer to recent reviews [84,87-89,90*-92*,93-97], articles [85,86**,98-103], and GeneReviews (http://www.ncbi.nlm.nih.gov/sites/GeneTests/review).

Other repeat expansion disorders

- > At least 24 other neurological disorders
- Non-coding repeat expansions usually display RNA foci (DM2, FXTAS, HDL2, SCA36, SCA31, SCA8, SCA10)
- Commonality points towards similar RNA gain-of-function mechanism
- Intronic repeats usually long

Add table Marka van Blitterswijk, Curr Opin Neurol 2012 how do c9orf72 repeat expansions cause als and ftd